Person:
Guilford, Tim

Loading...
Profile Picture
Email Address
Affiliation
ORCID
Birth Date
Job Title
Last Name
Guilford
First Name
Tim
Creator of
Editor of
Reviewer of
Copyright Holder of
Data Contributor of
Funder of
Translator of
Other Contributor of

Search Results

Now showing 1 - 5 of 5
  • Data package
    Data from: Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea
    (2015-10-27) Pollonara, Enrica; Luschi, Paolo; Guilford, Tim; Wikelski, Martin; Bonadonna, Francesco; Gagliardo, Anna
    Pelagic seabirds wander the open oceans then return accurately to their habitual nest-sites. We investigated the effects of sensory manipulation on oceanic navigation in Scopoli’s shearwaters (Calonectris diomedea) breeding at Pianosa island (Italy), by displacing them 400 km from their colony and tracking them. A recent experiment on Atlantic shearwaters (Cory’s shearwater, Calonectris borealis) breeding in the Azores indicated a crucial role of olfaction over the open ocean, but left open the question of whether birds might navigate by topographical landmark cues when available. Our experiment was conducted in the Mediterranean sea, where the availability of topographical cues may provide an alternative navigational mechanism for homing. Magnetically disturbed shearwaters and control birds oriented homeward even when the coast was not visible and rapidly homed. Anosmic shearwaters oriented in a direction significantly different from the home direction when in open sea. After having approached a coastline their flight path changed from convoluted to homeward oriented, so that most of them eventually reached home. Beside confirming that magnetic cues appear unimportant for oceanic navigation by seabirds, our results support the crucial role of olfactory cues for birds’ navigation and reveal that anosmic shearwaters are able to home eventually by following coastal features.
  • Data package
    Data from: Right hemisphere advantage in the development of route fidelity in homing pigeons
    (2017-08-01) Pollonara, Enrica; Guilford, Tim; Rossi, Marta; Bingman, Verner P.; Gagliardo, Anna
    Several laboratory studies have revealed functional hemispheric lateralization in birds performing visual tasks. However, the role of functional brain asymmetries in spatial behaviour in natural settings is still poorly investigated. We studied monocularly occluded homing pigeons, Columba livia, to investigate potential differences in the hemispheric control of navigational performance. We GPS-tracked monocularly occluded and control binocular homing pigeons during seven group training releases and a final solitary release from each of two sites. The pigeons were then given one last release from each site after a phase shift of the light-dark cycle under binocular conditions, to distinguish compass-based orientation from landmark-based pilotage. Overall, pigeons homing with the left eye/right hemisphere (RH) displayed a greater fidelity to the familiar space previously experienced than pigeons homing with the right eye/left hemisphere (LH). Another difference between the two monocular groups is that LH pigeons were more likely than RH pigeons to fly with other pigeons during the group training releases. The data support the hypothesis that the left eye/right hemisphere plays a more substantial role as pigeons develop fidelity to certain routes to home from familiar release sites, an enhanced fidelity that may be supported by superior memory for familiar landmarks.
  • Data package
    Data from: Anosmia impairs homing orientation but not foraging behaviour in free-ranging shearwaters
    (2017-09-02) Padget, Oliver; Dell'Ariccia, Gaia; Gagliardo, Anna; González-Solís, Jacob; Guilford, Tim
    Shearwaters deprived of their olfactory sense before being displaced to distant sites have impaired homing ability but it is unknown what the role of olfaction is when birds navigate freely without their sense of smell. Furthermore, treatments used to induce anosmia and to disrupt magneto-reception in displacement experiments might influence non-specific factors not directly related to navigation and, as a consequence, the results of displacement experiments can have multiple interpretations. To address this, we GPS-tracked the free-ranging foraging trips of incubating Scopoli’s shearwaters within the Mediterranean Sea. As in previous experiments, shearwaters were either made anosmic with 4% zinc sulphate solution, magnetically impaired by attachment of a strong neodymium magnet or were controls. We found that birds from all three treatments embarked on foraging trips, had indistinguishable at-sea schedules of behaviour and returned to the colony having gained mass. However, we found that in the pelagic return stage of their foraging trips, anosmic birds were not oriented towards the colony but that coastal navigation was unaffected. These results support the case for zinc sulphate having a specific effect on the navigational ability of shearwaters and thus the view that seabirds consult an olfactory map to guide them across seascapes.
  • Data package
    Data from: Right hemisphere advantage in the development of route fidelity in homing pigeons
    (2017-01-02) Pollonara, Enrica; Guilford, Tim; Rossi, Marta; Bingman, Verner P.; Gagliardo, Anna
    NOTE: A corrected version of this dataset is available. See doi:10.5441/001/1.73h2s043. ABSTRACT: Several laboratory studies have revealed functional hemispheric lateralization in birds performing visual tasks. However, the role of functional brain asymmetries in spatial behaviour in natural settings is still poorly investigated. We studied monocularly occluded homing pigeons, Columba livia, to investigate potential differences in the hemispheric control of navigational performance. We GPS-tracked monocularly occluded and control binocular homing pigeons during seven group training releases and a final solitary release from each of two sites. The pigeons were then given one last release from each site after a phase shift of the light-dark cycle under binocular conditions, to distinguish compass-based orientation from landmark-based pilotage. Overall, pigeons homing with the left eye/right hemisphere (RH) displayed a greater fidelity to the familiar space previously experienced than pigeons homing with the right eye/left hemisphere (LH). Another difference between the two monocular groups is that LH pigeons were more likely than RH pigeons to fly with other pigeons during the group training releases. The data support the hypothesis that the left eye/right hemisphere plays a more substantial role as pigeons develop fidelity to certain routes to home from familiar release sites, an enhanced fidelity that may be supported by superior memory for familiar landmarks.
  • Data package
    Data from: Shearwaters know the direction and distance home but fail to encode intervening obstacles after free-ranging foraging trips
    (2019-10-13) Padget, Oliver; Stanley, Geoff; Willis, Jay K.; Fayet, Annette L.; Bond, Sara; Maurice, Louise; Shoji, Akiko; Dean, Ben; Kirk, Holly; Juarez-Martinez, Ignacio; Freeman, Robin; Bolton, Mark; Guilford, Tim
    While displacement experiments have been powerful for determining the sensory basis of homing navigation in birds, they have left unresolved important cognitive aspects of navigation such as what birds know about their location relative to home and the anticipated route. Here, we analyze the free-ranging Global Positioning System (GPS) tracks of a large sample (n = 707) of Manx shearwater, Puffinus puffinus, foraging trips to investigate, from a cognitive perspective, what a wild, pelagic seabird knows as it begins to home naturally. By exploiting a kind of natural experimental contrast (journeys with or without intervening obstacles) we first show that, at the start of homing, sometimes hundreds of kilometers from the colony, shearwaters are well oriented in the homeward direction, but often fail to encode intervening barriers over which they will not fly (islands or peninsulas), constrained to flying farther as a result. Second, shearwaters time their homing journeys, leaving earlier in the day when they have farther to go, and this ability to judge distance home also apparently ignores intervening obstacles. Thus, at the start of homing, shearwaters appear to be making navigational decisions using both geographic direction and distance to the goal. Since we find no decrease in orientation accuracy with trip length, duration, or tortuosity, path integration mechanisms cannot account for these findings. Instead, our results imply that a navigational mechanism used to direct natural large-scale movements in wild pelagic seabirds has map-like properties and is probably based on large-scale gradients.