Person:
Kays, Roland

Loading...
Profile Picture
Email Address
Affiliation
ORCID
Birth Date
Job Title
Last Name
Kays
First Name
Roland
Creator of
Editor of
Reviewer of
Copyright Holder of
Data Contributor of
Funder of
Translator of
Other Contributor of

Search Results

Now showing 1 - 10 of 13
  • Data package
    Data from: Shared decision-making drives collective movement in wild baboons
    (2015-06-19) Crofoot, Margaret C.; Kays, Roland; Wikelski, Martin
    NOTE: An updated and larger version of this dataset is available. See https://doi.org/10.5441/001/1.3q2131q5. ABSTRACT: Conflicts of interest about where to go and what to do are a primary challenge of group living. However, it remains unclear how consensus is achieved in stable groups with stratified social relationships. Tracking wild baboons with a high-resolution global positioning system and analyzing their movements relative to one another reveals that a process of shared decision-making governs baboon movement. Rather than preferentially following dominant individuals, baboons are more likely to follow when multiple initiators agree. When conflicts arise over the direction of movement, baboons choose one direction over the other when the angle between them is large, but they compromise if it is not. These results are consistent with models of collective motion, suggesting that democratic collective action emerging from simple rules is widespread, even in complex, socially stratified societies.
  • Data package
    Data from: The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers
    (2016-01-12) Kays, Roland; Jansen, Patrick A.; Knecht, Elise M.H.; Vohwinkel, Reinhard; Wikelski, Martin
    Seed dispersal is critical to understanding forest dynamics but is hard to study because tracking seeds is difficult. Even for the best-studied dispersal system of the Neotropics, Virola nobilis, the dispersal kernel remains unknown. We combined high-resolution GPS/3D-acceleration bird tracking, seed-retention experiments, and field observations to quantify dispersal of V. nobilis by their principal dispersers, Ramphastos toucans. We inferred feeding events from movement data, and then estimated spatiotemporally explicit seed-dispersal kernels. Wild toucans moved an average of 1.8 km d^-1 with two distinct activity peaks. Seed retention time in captive toucans averaged 25.5 min (range 4-98 min). Estimated seed dispersal distance averaged 144 +/- 147 m, with a 56% likelihood of dispersal >100 m, two times further than the behaviour-naive estimate from the same data. Dispersal was furthest for seeds ingested in the morning, and increased with seed retention time, but only up to 60 min after feeding. Our study supports the long-standing hypothesis that toucans are excellent dispersers of Virola seeds. To maximize seed dispersal distances trees should ripen fruit in the morning when birds move the most, and produce fruits with gut-processing times around 60 min. Our study demonstrates how new tracking technology can yield nuanced seed dispersal kernels for animals that cannot be directly observed.
  • Data package
    Data from: Ámbito de hogar y actividad circadiana del ocelote (Leopardus pardalis) en la Isla de Barro Colorado, Panamá
    (2020-07-03) Moreno, Ricardo; Mares, Rafael; Aliaga-Rossel, Enzo; Kays, Roland
    Because ocelots (Leopardus pardalis) are elusive species in the wild, little is known of them. This study determines the home range and circadian activity of this feline in the Barro Colorado Island (BCI), Panama. This island has a wet tropical rainforest. Using wooden box traps and Tomahawk traps, between July 2001 and May 2004 15 ocelots were captured, and three other ocelots in 2009. Once captured, they were sedated and VHF collars were fitted, for the ones captured in 2009 we fitted GPS collars. Camera-traps were used to get additional information from individuals without collars and a more reliable data interpretation. The average home range of ocelots, obtained by radio-telemetry was 3.48 km2 (DE: 3.17) for males and 1.48 km2 (DE: 0.65) for females, although an adult male used an area of 9 km2. Males traveled on average 1.15 km per day and females 0.7 km. Through telemetry and camera traps, we found that ocelots were primarily nocturnal (Night = 63.2%; Day = 36.8%). Our results are similar to other studies; however, they suggest that BCI ocelots have smaller home ranges due to the high availability of food and also by the high density of females within the home ranges of males.
  • Data package
    Data from: New York State bald eagle report 2010
    (2018-12-21) Nye, Peter; Hewitt, Glenn; Swenson, Theresa; Kays, Roland
    Satellite telemetry collected between 1992 and 2010 by the New York State Department of Environmental Conservation to document the migratory pathways of raptors and owls in NY State.
  • Data package
    Data from: Large-range movements of neotropical orchid bees observed via radio telemetry
    (2020-07-03) Wikelski, Martin; Moxley, Jerry; Eaton-Mordas, Alexander; López-Uribe, Margarita M.; Holland, Richard A.; Moskowitz, David; Roubik, David W.; Kays, Roland
    Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators.
  • Data package
    Data from: The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers
    (2012-03-20) Kays, Roland; Jansen, Patrick A.; Knecht, Elise M.H.; Wikelski, Martin; Vohwinkel, Reinhard
    NOTE: A corrected version of this dataset is available. See doi:10.5441/001/1.f32gn841. ABSTRACT: Seed dispersal is critical to understanding forest dynamics but is hard to study because tracking seeds is difficult. Even for the best-studied dispersal system of the Neotropics, Virola nobilis, the dispersal kernel remains unknown. We combined high-resolution GPS/3D-acceleration bird tracking, seed-retention experiments, and field observations to quantify dispersal of V. nobilis by their principal dispersers, Ramphastos toucans. We inferred feeding events from movement data, and then estimated spatio-temporally explicit seed-dispersal kernels. Wild toucans moved an average of 1.8 km d−1 with two distinct activity peaks. Seed retention time in captive toucans averaged 25.5 min (range 4–98 min). Estimated seed dispersal distance averaged 144 ± 147 m, with a 56% likelihood of dispersal >100 m, two times further than the behaviour-naive estimate from the same data. Dispersal was furthest for seeds ingested in the morning, and increased with seed retention time, but only up to 60 min after feeding. Our study supports the long-standing hypothesis that toucans are excellent dispersers of Virola seeds. To maximize seed dispersal distances trees should ripen fruit in the morning when birds move the most, and produce fruits with gut-processing times around 60 min. Our study demonstrates how new tracking technology can yield nuanced seed dispersal kernels for animals that cannot be directly observed.
  • Data package
    Data from: Ecological impact of inside/outside house cats around a suburban nature preserve
    (2020-07-02) Kays, Roland; DeWan, Amielle A.
    While subsidised populations of feral cats are known to impact their prey populations, little is known about the ecological impact of inside/outside hunting cats (IOHC). We studied IOHC around a suburban nature preserve. Mail surveys indicated an average of 0.275 IOHC/house, leading to a regional density estimate of 0.32 IOHC/ha. A geographical model of cat density was created based on local house density and distance from forest/neighbourhood edge. IOHC hunted mostly small mammals, averaging 1.67 prey brought home/cat/month and a kill rate of 13%. Predation rates based on kills brought home was lower than the estimate from observing hunting cats (5.54 kills/cat/month). IOHC spent most outside time in their or their immediate neighbours' garden/yard, or in the nearby forest edge; 80% of observed hunts occurred in a garden/yard or in the first 10 m of forest. Radio‐tracked IOHC averaged 0.24 ha in home‐range size (95% minimum convex polygon (MCP)) and rarely entered forest. Confirming this, scent stations detected cats more often near the edge and more cats were detected in smaller forest fragments. There was no relationship between the number of cats detected in an area and the local small mammal abundance or rodent seed predation rates. Cold weather and healthy cat predator populations are speculated to minimise the ecological impact of IOHC on this area.
  • Data package
    Data from: Animal behavior, cost-based corridor models, and real corridors
    (2013-07-02) LaPoint, Scott; Gallery, Paul; Wikelski, Martin; Kays, Roland
    Corridors are popular conservation tools because they are thought to allow animals to safely move between habitat fragments, thereby maintaining landscape connectivity. Nonetheless, few studies show that mammals actually use corridors as predicted. Further, the assumptions underlying corridor models are rarely validated with field data. We categorized corridor use as a behavior, to identify animal-defined corridors, using movement data from fishers (Martes pennanti) tracked near Albany, New York, USA. We then used least-cost path analysis and circuit theory to predict fisher corridors and validated the performance of all three corridor models with data from camera traps. Six of eight fishers tracked used corridors to connect the forest patches that constitute their home ranges, however the locations of these corridors were not well predicted by the two cost-based models, which together identified only 5 of the 23 used corridors. Further, camera trap data suggest the cost-based corridor models performed poorly, often detecting fewer fishers and mammals than nearby habitat cores, whereas camera traps within animal-defined corridors recorded more passes made by fishers, carnivores, and all other non-target mammal groups. Our results suggest that (1) fishers use corridors to connect disjunct habitat fragments, (2) animal movement data can be used to identify corridors at local scales, (3) camera traps are useful tools for testing corridor model predictions, and (4) that corridor models can be improved by incorporating animal behavior data. Given the conservation importance and monetary costs of corridors, improving and validating corridor model predictions is vital.
  • Data package
    Data from: Study "Collective movement in wild baboons"
    (2021-08-10) Crofoot, Margaret C.; Kays, Roland; Wikelski, Martin
    When members of a group differ in locomotor capacity, coordinating collective movement poses a challenge: some individuals may have to move faster (or slower) than their preferred speed to remain together. Such compromises have energetic repercussions, yet research in collective behaviour has largely neglected locomotor consensus costs. Here, we integrate high-resolution tracking of wild baboon locomotion and movement with simulations to demonstrate that size-based variation in locomotor capacity poses an obstacle to the collective movement. While all baboons modulate their gait and move-pause dynamics during collective movement, the costs of maintaining cohesion are disproportionately borne by smaller group members. Although consensus costs are not distributed equally, all group-mates do make locomotor compromises, suggesting a shared decision-making process drives the pace of collective movement in this highly despotic species. These results highlight the importance of considering how social dynamics and locomotor capacity interact to shape the movement ecology of group-living species.
  • Data package
    Data from: Eastern coyote home range, habitat selection and survival in the Albany pine bush landscape
    (2019-12-10) Bogan, Daniel A.; Kays, Roland
    In the northeast USA, top mammalian predators were extirpated through persecution and habitat loss. The coyote (Canis latrans) expanded into the northeast taking advantage of this vacant predator niche. Since 1970, coyotes have been widespread across all of mainland New York, yet no study has examined how well coyotes survive in suburban areas in this region and little is known of their ecological roles or potential to conflict with people. This information is important because in western states coyotes have high survival rates, a high degree of urban association and cause conflict with people. I studied survivorship and correlates of cause-specific mortality of coyotes using radio telemetry. The annual survival rate was 0.20 ± 0.14. There were no differences in survival rates between sexes, age classes, home range location, or capture methods. Collisions with vehicles (n = 7) and shooting (n = 6) accounted for the 2 major mortality factors. Coyotes that were killed by vehicles crossed roads more often than all other coyotes, though they did not have more roads within their home ranges. Coyotes that were shot had a larger mean and maximum open habitat patch size within their home ranges. High exploitation of the local coyote population may cause coyotes to avoid human-developed lands thus reducing the potential for negative interactions with people. I concurrently studied home range and habitat selection of coyotes in the suburban Albany Pine Bush landscape. Fixed kernel and minimum convex polygon (95%) home ranges (n = 17) averaged 6.81 km2 and 5.75 km2, respectively. Habitat analysis revealed that coyotes selected for natural habitat and avoided residential and commercial lands when locating a home range area and moving within the home range. Compositional analysis additionally ranked natural habitat as the most selected habitat at 2 spatial scales of selection (62.3% and 74.5%). Coyotes lived in small home ranges and primarily used the remaining natural lands in the suburban landscape. These results indicate that local coyotes maintain a natural ecological role and under existing conditions do not currently pose a threat to people and pets living adjacent to natural lands.