Person:
Taylor, Philip D.

Loading...
Profile Picture
Email Address
Affiliation
ORCID
Birth Date
Job Title
Last Name
Taylor
First Name
Philip D.
Creator of
Editor of
Reviewer of
Copyright Holder of
Data Contributor of
Funder of
Translator of
Other Contributor of

Search Results

Now showing 1 - 2 of 2
  • Data package
    Data from: Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird
    (2015-09-24) Mitchell, Greg W.; Woodworth, Bradley K.; Taylor, Philip D.; Norris, D. Ryan
    Background: Given that winds encountered on migration could theoretically double or half the energy expenditure of aerial migrants, there should be strong selection on behaviour in relation to wind conditions aloft. However, evidence suggests that juvenile songbirds are less choosey about wind conditions at departure relative to adults, potentially increasing energy expenditure during flight. To date, there has yet to be a direct comparison of flight efficiency between free-living adult and juveniles songbirds during migration in relation to wind conditions aloft, likely because of the challenges of following known aged individual songbirds during flight. We used an automated digital telemetry array to compare the flight efficiency of adult and juvenile Savannah sparrows (Passerculus sandwichensis) as they flew nearly 100 km during two successive stages of their fall migration; a departure flight from their breeding grounds out over the ocean and then a migratory flight along a coast. Using a multilevel path modelling framework, we evaluated the effects of age, flight stage, tailwind component, and crosswind component on flight duration and groundspeed. Results: We found that juveniles departed under wind conditions that were less supportive relative to adults and that this resulted in juveniles taking 1.4 times longer to complete the same flight trajectories as adults. We did not find an effect of age on flight duration or groundspeed after controlling for wind conditions aloft, suggesting that both age groups were flying at similar airspeeds. We also found that groundspeeds were 1.7 times faster along the coast than over the ocean given more favourable tailwinds along the coast and because birds appeared to be climbing in altitude over the ocean, diverting some energy from horizontal to vertical movement. Conclusions: Our results provide the first direct evidence that adult songbirds have considerably more efficient migratory flights than juveniles, and that this efficiency is driven by the selection of more supportive tailwind conditions aloft. Given the importance of wind for efficient flight, we suggest this behaviour could be adaptive in juveniles, if for example, the benefits of a more flexible departure schedule outweigh the costs of flying with less supportive winds.
  • Data package
    Data from: Study "Herring Gulls (Larus Argentatus); Ronconi; Sable Island, Canada"
    (2020-06-17) Ronconi, Robert A.; Taylor, Philip D.
    Background: Recent studies have proposed that birds migrating short distances migrate at an overall slower pace, minimizing energy expenditure, while birds migrating long distances minimize time spent on migration to cope with seasonal changes in environmental conditions. Methods: We evaluated variability in the migration strategies of Herring Gulls (Larus argentatus), a generalist species with flexible foraging and flight behaviour. We tracked one population of long distance migrants and three populations of short distance migrants, and compared the directness of their migration routes, their overall migration speed, their travel speed, and their use of stopovers. Results: Our research revealed that Herring Gulls breeding in the eastern Arctic migrate long distances to spend the winter in the Gulf of Mexico, traveling more than four times farther than gulls from Atlantic Canada during autumn migration. While all populations used indirect routes, the long distance migrants were the least direct. We found that regardless of the distance the population traveled, Herring Gulls migrated at a slower overall migration speed than predicted by Optimal Migration Theory, but the long distance migrants had higher speeds on travel days. While long distance migrants used more stopover days overall, relative to the distance travelled all four populations used a similar number of stopover days. Conclusions: When taken in context with other studies, we expect that the migration strategies of flexible generalist species like Herring Gulls may be more influenced by habitat and food resources than migration distance.