Person:
Hatzofe, Ohad

Loading...
Profile Picture
Email Address
Affiliation
ORCID
Birth Date
Job Title
Last Name
Hatzofe
First Name
Ohad
Creator of
Editor of
Reviewer of
Copyright Holder of
Data Contributor of
Funder of
Translator of
Other Contributor of

Search Results

Now showing 1 - 2 of 2
  • Data package
    Data from: Landscape-dependent time versus energy optimisations in pelicans migrating through a large ecological barrier
    (2019-08-08) Efrat, Ron; Hatzofe, Ohad; Nathan, Ran
    1. During migration, birds are often forced to cross ecological barriers, facing challenges due to scarcity of resources and suitable habitats. While crossing such barriers, birds are expected to adjust their behaviour to reduce time, energy expenditure and associated risks. 2. We studied the crossing of the Sahara Desert by the Great White Pelican (Pelecanus onocrotalus), a large wetland‐specialist. We focused on decisions made by migrating pelicans along different parts of the southbound autumn migration, their response to local environmental conditions, and the implications for time and energy optimisations. We compared the observed pelicans' migration routes with simulated “direct‐pass” (shortest, mostly across the desert) and “corridor‐pass” (along the Nile River) routes, and used GPS, body acceleration and atmospheric modelling to compare flight behaviour along the Nile River versus the desert. 3. The observed route was significantly shorter and faster than the simulated corridor‐pass route and not significantly different from the simulated direct‐pass one. Daily flights over the desert were longer than along the Nile River, with flying time extending to late hours of the day despite unfavourable atmospheric conditions for soaring‐gliding flight. Moreover, the pelicans behavioural response to atmospheric conditions changed according to the landscape over which they flew. Overall, the pelicans showed stronger behavioural adjustments to atmospheric conditions over the desert than along the Nile River. 4. Our findings suggest that migrating pelicans primarily acted as time minimisers while crossing the Sahara Desert, whereas energetic optimisation was only considered when it did not substantially compromise time optimisation. The pelicans took the almost shortest possible route, only following the Nile River along its south‐oriented parts, and frequently staged overnight in the desert far from water, despite being large, wet‐habitat specialists. Correspondingly, their behavioural response to atmospheric conditions changed according to the landscape over which they were flying, switching between time (over the desert) and energy (over the Nile River) optimisation strategies. Our results suggest that the interaction between landscape and atmospheric conditions depict a flexible, yet primarily time‐dominated, migration optimisation strategy.
  • Data package
    Data from: Moving beyond curve-fitting: using complementary data to assess alternative explanations for long movements of three vulture species
    (2015-02-03) Spiegel, Orr M.; Harel, Roi; Centeno-Cuadros, Alejandro; Hatzofe, Ohad; Getz, Wayne M.; Nathan, Ran
    Animal movements exhibit an almost universal pattern of fat-tailed step-size distributions, mixing short and very long steps. The Lévy-flight foraging hypothesis (LFFH) suggests a single optimal food search strategy to explain this pattern, yet mixed movement distributions are biologically more plausible and often convincingly fit movement data. To confront alternative explanations for these patterns, we tracked vultures of three species in two very different ecosystems using high-resolution GPS/accelerometer tags accompanied by behavioral, genetic and morphological data. The Lévy distribution fitted the datasets reasonably well, matching expectations based on their sparsely distributed food resources; yet, the fit of mixed models was considerably better, suggesting distinct movement modes operating at three different scales. Specifically, long-range forays (LRFs)—rare, short-term, large-scale circular journeys that greatly exceed the typical foraging range and contribute to the tail-fatness of the movement distribution in all three species – do not match an optimal foraging strategy suggested by the LFFH. We also found no support for preferred weather conditions or population genetic structure as alternative explanations, so the hypothesis that LRFs represent failed breeding dispersal attempts to find mates remains our most plausible explanation at this time. We conclude that inference about the mechanisms underlying animal movements should be confronted with complementary data, and suggest that mixed behavioral-modes likely explain commonly observed fat-tailed movement distributions.