Data from: State-switching continuous-time correlated random walks
datacite.RelatedIdentifier | https://doi.org/10.1111/2041-210X.13154 | |
datacite.RelatedIdentifier.relatedIdentifierType | DOI | |
datacite.RelatedIdentifier.relationType | IsSupplementTo | |
dc.contributor.author | McConnell, Bernie J. | |
dc.date.accessioned | 2019-02-28T17:51:30Z | |
dc.date.available | 2019-02-28T17:51:30Z | |
dc.date.issued | 2019-02-28 | |
dc.date.submitted | 2019 | |
dc.description.abstract | (1) Continuous‐time models have been developed to capture features of animal movement across temporal scales. In particular, one popular model is the continuous‐time correlated random walk, in which the velocity of an animal is formulated as an Ornstein–Uhlenbeck process, to capture the autocorrelation in the speed and direction of its movement. In telemetry analyses, discrete‐time state‐switching models (such as hidden Markov models) have been increasingly popular to identify behavioural phases from animal tracking data. (2) We propose a multistate formulation of the continuous‐time correlated random walk, with an underlying Markov process used as a proxy for the animal’s behavioural state process. We present a Markov chain Monte Carlo algorithm to carry out Bayesian inference for this multistate continuous‐time model. (3) Posterior samples of the hidden state sequence, of the state transition rates, and of the state‐dependent movement parameters can be obtained. We investigate the performance of the method in a simulation study, and we illustrate its use in a case study of grey seal (Halichoerus grypus) tracking data. (4) The method we present makes use of the state‐space model formulation of the continuous‐time correlated random walk, and can accommodate irregular sampling frequency and measurement error. It will facilitate the use of continuous‐time models to estimate movement characteristics and infer behavioural states from animal telemetry data. | |
dc.identifier.doi | doi:10.5441/001/1.m7j2263r | |
dc.identifier.uri | https://datarepository.movebank.org/handle/10255/move.844 | |
dc.language.iso | eng | |
dc.relation | Methods in Ecology and Evolution | |
dc.relation.haspart | doi:10.5441/001/1.m7j2263r/1 | |
dc.relation.haspart | doi:10.5441/001/1.m7j2263r/2 | |
dc.relation.isreferencedby | doi:10.1111/2041-210X.13154 | |
dc.relation.isreferencedby | doi:10.1111/oik.01810 | |
dc.rights | CC0 1.0 Universal | en |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.subject | Halichoerus grypus | |
dc.subject | animal movement | |
dc.subject | animal tracking | |
dc.subject | grey seal | |
dc.subject | Halichoerus grypus | |
dc.subject | North Sea | |
dc.subject | state-space model | |
dc.title | Data from: State-switching continuous-time correlated random walks | |
dc.type | Article | |
dspace.entity.type | Data package | |
dwc.ScientificName | Halichoerus grypus | |
mdr.animal.count | 1 | |
mdr.citation.BibTex | @misc{001/1_m7j2263r, title = {Data from: State-switching continuous-time correlated random walks}, author = {McConnell, BJ}, year = {2019}, URL = {http://dx.doi.org/10.5441/001/1.m7j2263r}, doi = {doi:10.5441/001/1.m7j2263r}, publisher = {Movebank data repository} } | |
mdr.citation.CSE | McConnell BJ. 2019. Data from: State-switching continuous-time correlated random walks. Movebank Data Repository. https://doi.org/10.5441/001/1.m7j2263r | |
mdr.citation.RIS | TY - DATA ID - doi:10.5441/001/1.m7j2263r T1 - Data from: State-switching continuous-time correlated random walks AU - McConnell, Bernie J. Y1 - 2019/02/28 KW - Halichoerus grypus KW - animal behavior KW - animal movement KW - animal tracking KW - grey seal KW - Halichoerus grypus KW - North Sea KW - state-space model KW - Halichoerus grypus PB - Movebank data repository UR - http://dx.doi.org/10.5441/001/1.m7j2263r DO - doi:10.5441/001/1.m7j2263r ER - | |
mdr.journal.title | Methods in Ecology and Evolution | |
mdr.location.count | 2535 | |
mdr.study.id | 654043458 | |
relation.isAuthorOfDatapackage | 80f8e68b-d3a0-459a-b391-96a4772e226a | |
relation.isAuthorOfDatapackage.latestForDiscovery | 80f8e68b-d3a0-459a-b391-96a4772e226a | |
relation.isSensorOfDatapackage | 32573e6b-4e7b-4144-b181-0288c3682347 | |
relation.isSensorOfDatapackage.latestForDiscovery | 32573e6b-4e7b-4144-b181-0288c3682347 | |
relation.isTaxonOfDatapackage | bd0d37af-6e28-4020-a68b-8dcfa76ca50d | |
relation.isTaxonOfDatapackage.latestForDiscovery | bd0d37af-6e28-4020-a68b-8dcfa76ca50d | |
sensor.name | GPS |
Files
Original bundle
1 - 3 of 3
No Thumbnail Available
- Name:
- GreySeal_McConnell_UK.csv
- Size:
- 373.43 KB
- Format:
- Unknown data format
- Description:
- dataset-file
No Thumbnail Available
- Name:
- GreySeal_McConnell_UK-reference-data.csv
- Size:
- 270 B
- Format:
- Unknown data format
- Description:
- dataset-file