Data packages

Data packages

Browse

Recent Publications

Now showing 1 - 5 of 309
  • Data package
    Data from: Study "Satellite tracking of black-capped petrels, 2019"
    (2023-05-30) Satgé, Yvan G.; Keitt, Bradford S.; Gaskin, Chris P.; Patteson, J. Brian; Jodice, Patrick G.R.
  • Data package
    Data from: Study "Eurasian teal, Giunchi, Italy"
    (2023-05-24) Giunchi, Dimitri; Lenzoni, Alfonso; Sorrenti, Michele; Baldaccini, Natale Emilio; Luschi, Paolo; Cerritelli, Giulia; Vanni, Lorenzo
  • Data package
    Data from: Study "GPS tracking of bobcats and coyotes in northern Washington"
    (2023-05-19) Prugh, Laura R.
    The challenge that large carnivores face in coexisting with humans calls into question their ability to carry out critical ecosystem functions such as mesopredator suppression outside protected areas. In this study, we examined the movements and fates of mesopredators and large carnivores across rural landscapes characterized by substantial human influences. Mesopredators shifted their movements toward areas with twofold-greater human influence in regions occupied by large carnivores, indicating that they perceived humans to be less of a threat. However, rather than shielding mesopredators, human-caused mortality was more than three times higher than large carnivore–caused mortality. Mesopredator suppression by apex predators may thus be amplified, rather than dampened, outside protected areas, because fear of large carnivores drives mesopredators into areas of even greater risk from human super predators.
  • Data package
    Data from: Study "Barn Swallow Hirundidae GPS data from Boulder County, CO, USA"
    (2023-05-09) McDermott, Molly Tankersley; Madden, Sage Alyssa; Safran, Rebecca Jo
    Life history theory predicts that increased investment in current offspring decreases future fecundity or survival. Avian parental investment decisions have been studied either via brood size manipulation or direct manipulation of parental energetic costs (also known as handicapping). However, we have limited experimental data on the potential interactive effects of these manipulations on parent behavior. Additionally, we know little about how these manipulations affect spatial foraging behavior away from the nest. We simultaneously manipulated brood size and parental costs (via added weight in the form of a GPS tag) in wild female barn swallows (Hirundo rustica). We measured multiple aspects of parent behavior at and away from the nest while controlling for measures of weather conditions. We found no significant interactive effects of manipulated brood size and parental costs. Both sexes increased their visitation rate with brood size, but nestlings in enlarged broods grew significantly less post-brood size manipulation than those in reduced broods. Foraging range area was highly variable among GPS-tagged females but was unaffected by brood size. As such, increased visitation rate in response to brood size may be more energetically costly for far-ranging females. GPS-tagged females did not alter their visitation rate relative to un-tagged birds, but their mates had higher visitation rates. This suggests that GPS tagging may affect some unmeasured aspect of female behavior, such as prey delivery. Our findings indicate that investigation of foraging tactics alongside visitation rate is critical to understanding parental investment and the benefits and costs of reproduction.
  • Data package
    Data from: Urbanization and artificial light at night reduce the functional connectivity of migratory aerial habitat
    (2023-05-05) Korpach, Alicia M.; Garroway, Colin J.; Mills, Alexander M.; von Zuben, Valerie; Davy, Christina M.; Fraser, Kevin C.
    Flying animals use aerial habitats to forage, communicate and travel. However, human activities that fragment aerial habitat with built structures, noise, and chemical or light pollution, may limit the ability of wildlife to use airspace efficiently. Applying landscape connectivity theory to aerial habitats could reveal how long-distance migrants respond to sources of aerial habitat fragmentation along their migratory routes. Artificial light at night is a major component of urbanization that fragments dark skies across North America. Attraction of nocturnal migrants to urban light is well documented, but species-specific responses, especially throughout a full migration from breeding to wintering grounds, are not. We tested hypotheses about long-distance migratory movements in relation to artificial light using a highly nocturnal, Nearctic-Neotropical avian migrant (Eastern whip-poor-will Antrostomus vociferus). We applied a resource selection framework at multiple spatial scales to explore whether GPS-tracked birds (n = 10) responded to urbanization in general, or artificial light specifically, during migratory flights. We found little evidence of attraction to artificial light during nocturnal flights. Artificial light and urbanization were highly correlated and difficult to disentangle, but the birds generally avoided urban areas and selected dark-connected skies for travel. Migratory stopovers (locations where GPS-tracked birds (n = 20) paused for at least one night), were located almost exclusively in dark, rural areas. Our results illustrate that considering how nocturnal aerial migrants respond to both aerial and terrestrial habitat elements can improve our understanding of what may facilitate their long-distance movements.