Search Results

Now showing 1 - 10 of 134
  • Data package
    Data from: Study "Wood stork (Mycteria americana) Southeastern US 2004–2019"
    (2021-10-11) Basille, Mathieu; Borkhataria, Rena R.; Bryan, A. Lawrence, Jr.; Bucklin, David N.; Picardi, Simona; Frederick, Peter C.
    Data collection was supported by the U.S. National Park Service, U.S. Army Corps of Engineers, U.S. Fish and Wildlife Service, and U.S. Geological Survey. ABSTRACT: The function of migration is to allow exploitation of resources whose availability is heterogeneous in space and time. Much effort has been historically directed to studying migration as a response to seasonal, predictable fluctuations in resource availability in temperate species. A deeper understanding of how different migration patterns emerge in response to different patterns of resource variation requires describing migration patterns of species inhabiting less predictable environments, especially in tropical and subtropical areas. We provide the first individual-based, quantitative description of migratory patterns in a subtropical wading bird in the southeastern United States, the wood stork (Mycteria americana). Using GPS tracking data for 64 individuals tracked between 2004 and 2017, we classified migratory behavior at the individual-year level using information theory-based model selection on nonlinear models of net squared displacement. We found that the wood stork population is partially migratory, with 59% of individuals seasonally commuting between winter ranges in Florida and summer ranges elsewhere in the population range (migrants), and 28% remaining in a single area in Florida year-round (residents). Additionally, 13% of storks act as facultative migrants, migrating in some years but not in others. Comparing the distribution of residents and migrants suggests that different migratory strategies might be associated with the use of different or differently distributed resources, possibly including food supplementation from human activities. The existence of facultative migrants shows the potential for plastic change in migratory patterns. Partial migration in wood storks may be an adaptation to high heterogeneity and unpredictability of food resources. We suggest that future research should focus on wading birds as model species for the study of partial migration as an adaptation to heterogeneous and unpredictable environments.
  • Data package
    Data from: The price of being late: short- and long-term consequences of a delayed migration timing [naturally-timed birds]
    (2023-07-28) Bontekoe, Iris D.; Fiedler, Wolfgang; Wikelski, Martin; Flack, Andrea
    Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
  • Data package
    Data from: Study "NC Wood Stork Tracking"
    (2023-12-23) Schweitzer, Sara; Bryan, A. Lawrence, Jr.; Brzorad, John; Kays, Roland
    We tracked two wood storks (Mycteria americana) from a breeding site in North Carolina, documenting their migrations to southern Florida. This is one of the northernmost breeding grounds for the species. Dice was tracked with a GPS/GSM/ACC tag from e-obs GmbH, and Mr Lay was tracked with a GSM-GPS tag from Microwave Telemetry Inc. Duplicates and location outliers were flagged in Movebank by manually flagging visible outliers and then using filters. First, the duplicate filter was used to flag multiple records records with matching tag ID and timestamp, with a preference to retain "eobs:status" values in the following order: A, B, C, D, blank. Second, the speed filter was run using maximum plausible speed of 50 m/s and maximum location error 100 m, using the "longest consistent track" method.
  • Data package
    Data from: At-sea distribution of spectacled eiders: a 120-year-old mystery resolved
    (2016-12-19) Petersen, Margaret R.; Douglas, David C.
    NOTE: An updated and larger version of this dataset is available through the US Geological Survey Alaska Science Center. See https://doi.org/10.5066/P9B091HG. ABSTRACT: The at-sea distribution of the threatened Spectacled Eider (Somateria fischeri) has remained largely undocumented. We identified migration corridors, staging and molting areas, and wintering areas of adult Spectacled Eiders using implanted satellite transmitters in birds from each of the three extant breeding grounds (North Slope and Yukon-Kuskokwim Delta in Alaska and arctic Russia). Based on transmitter locations, we conducted aerial surveys to provide visual confirmation of eider flocks and to estimate numbers of birds. We identified two principal molting and staging areas off coastal Alaska (Ledyard Bay and eastern Norton Sound) and two off coastal Russia (Mechigmenskiy Bay on the eastern Chukotka Peninsula, and the area between the Indigirka and Kolyma deltas in the Republic of Sakha). We estimated that >10,000 birds molt and stage in monospecific flocks at Mechigmenskiy and Ledyard bays, and several thousand molt and stage in eastern Norton Sound. We further identified eastern Norton Sound as the principal molting and staging area for females nesting on the Yukon-Kuskokwim Delta, and Ledyard Bay and Mechigmenskiy Bay as the principal molting and staging areas for females nesting on the North Slope. Males marked at all three breeding grounds molt and stage in Mechigmenskiy Bay, Ledyard Bay, and the Indigirka-Kolyma delta region. Males from the Yukon-Kuskokwim Delta molt and stage mainly at Mechigmenskiy Bay. Equal numbers of males from the North Slope molt and stage at all three areas, and most males from arctic Russia molt and stage at the Indigirka-Kolyma delta region. Postbreeding migration corridors were offshore in the Bering, Chukchi, and Beaufort seas. In winter, eiders were in the Bering Sea south of St. Lawrence Island. Our estimates from surveys in late winter and early spring suggest that at least 333,000 birds winter in single-species flocks in the pack ice in the Bering Sea.
  • Data package
    Data from: Locally adapted migration strategies: Comparing routes and timing of northern wheatears from alpine and lowland European populations [Austria]
    (2022-06-17) Meier, Christoph M.; Buchmann, Martin; Liechti, Felix
    The northern wheatear Oenanthe oenanthe has an almost circumpolar breeding distribution in the northern hemisphere, but all populations migrate to sub-Saharan Africa in winter. Currently, tracking data suggest two main access routes to the northern continents via the Middle East and the Iberian Peninsula. These routes would require detours for birds breeding in the European Alps. Our aim was to map the migration routes and determine annual schedules for birds breeding in Switzerland and Austria, using light level geolocators. We compared their migration patterns with birds from a lowland breeding population in Germany. Birds from the Alps cross the Mediterranean Sea directly heading straight to their non-breeding sites. In contrast, birds from Germany travelled further west via the Iberian Peninsula. While the German population initiated autumn migration relatively early, arrival on the wintering sites was nearly synchronous across the three populations. During spring migration, German birds arrived earlier at their breeding grounds than birds from the Alps. A comparison with the literature indicated that the breeding populations in the Alps use their own route and are among the latest to arrive in spring, showing resemblance to the phenology of Arctic breeding populations. Our results indicate that the annual cycle of Alps-breeding wheatears is influenced primarily by breeding ground conditions, and not solely by migration distance.
  • Data package
    Data from: Fitness, behavioral, and energetic trade-offs of different migratory strategies in a partially migratory species
    (2023-08-03) Soriano-Redondo, Andrea; Franco, Aldina M.A.; Acácio, Marta; Payo-Payo, Ana; Martins, Bruno Herlander; Moreira, Francisco; Catry, Inês
    Alternative migratory strategies can coexist within animal populations and species. Anthropogenic impacts can shift the fitness balance between these strategies leading to changes in migratory behaviors. Yet some of the mechanisms that drive such changes remain poorly understood. Here we investigate the phenotypic differences, and the energetic, behavioral, and fitness trade-offs associated with four different movement strategies (long- and short-distance migration, and regional and local residency) in a population of white storks (Ciconia ciconia) that has shifted its migratory behavior over the last decades, from fully long-distance migration towards year-round residency. To do this, we tracked 75 adult storks fitted with GPS/GSM loggers with triaxial acceleration sensors over 5 years, and estimated individual displacement, behavior, and overall dynamic body acceleration, a proxy for activity-related energy expenditure. Additionally, we monitored nesting colonies to assess individual survival and breeding success. We found that long-distance migrants travelled thousands of kilometers more throughout the year, spent more energy, and >10% less time resting compared to short-distance migrants and residents. Long-distance migrants also spent on average more energy per unit of time while foraging, and less energy per unit of time while soaring. Migratory individuals also occupied their nests later than resident ones, later occupation led to later laying date and reduced number of fledglings. However, we did not find significant differences in survival probability. Finally, we found phenotypic differences in the migratory probability, as smaller-sized individuals were more likely to migrate, and they might be incurring in higher energetic and fitness costs than larger ones. Our results shed light into the shifting migratory strategies in a partially migratory population and highlight the nuances of anthropogenic impacts on species behavior, fitness, and evolutionary dynamics.
  • Data package
    Data from: Study "MPIAB Argos white stork tracking (1991-2017)"
    (2022-12-26) Berthold, Peter; Kaatz, Christoph; Kaatz, Michael; Querner, Ulrich; van den Bossche, Willem; Chernetsov, Nikita; Fiedler, Wolfgang; Wikelski, Martin
    Satellite tracking of white storks (Ciconia ciconia) was begun by the Max Planck Institute of Ornithology and collaborators in 1991. After solar-powered transmitters became available in 1995, extended battery life combined with the possibility to replace transmitters over time allowed monitoring the movements of individual storks across multiple migration seasons, with one individual, Prinzesschen, tracked for over a decade. Research efforts continue using primarily GSM-based tracking technologies. This dataset includes over 200 storks tagged in Belgium, Germany, Greece, Israel, Poland, Russia, South Africa, Spain and Switzerland. As noted in the deployment information, some movements are influenced by experimental manipulations. This long-term study confirms what previous several-year tracking studies of white storks had indicated: there can be great variability from year to year in the choice of winter quarters as well as in the routes and times of migration, intermediate destinations and stop-over periods, but constancy of winter quarters and migration routes is also possible. The variability may well be caused by external factors, of which food supply is probably predominant.
  • Data package
    Data from: Locally adapted migration strategies: Comparing routes and timing of northern wheatears from alpine and lowland European populations [Germany]
    (2022-06-17) Meier, Christoph M.; Buchmann, Martin; Liechti, Felix
    The northern wheatear Oenanthe oenanthe has an almost circumpolar breeding distribution in the northern hemisphere, but all populations migrate to sub-Saharan Africa in winter. Currently, tracking data suggest two main access routes to the northern continents via the Middle East and the Iberian Peninsula. These routes would require detours for birds breeding in the European Alps. Our aim was to map the migration routes and determine annual schedules for birds breeding in Switzerland and Austria, using light level geolocators. We compared their migration patterns with birds from a lowland breeding population in Germany. Birds from the Alps cross the Mediterranean Sea directly heading straight to their non-breeding sites. In contrast, birds from Germany travelled further west via the Iberian Peninsula. While the German population initiated autumn migration relatively early, arrival on the wintering sites was nearly synchronous across the three populations. During spring migration, German birds arrived earlier at their breeding grounds than birds from the Alps. A comparison with the literature indicated that the breeding populations in the Alps use their own route and are among the latest to arrive in spring, showing resemblance to the phenology of Arctic breeding populations. Our results indicate that the annual cycle of Alps-breeding wheatears is influenced primarily by breeding ground conditions, and not solely by migration distance.
  • Data package
    Data from: Study "Milvus_milvus_Soaring_over_Adriatic_sea"
    (2023-12-11) Škrábal, Jan; Literák, Ivan; Raab, Rainer
    Background: For soaring birds, the ability to benefit from variable airflow dynamics is crucial, especially while crossing natural barriers such as vast water bodies during migration. Soaring birds also take advantage of warm rising air, so-called thermals, that allow birds to ascend passively to higher altitudes with reduced energy costs. Although it is well known that soaring migrants generally benefit from supportive winds and thermals, the potential of uplifts and other weather factors enabling soaring behavior remains unsolved. Methods: In this study, we GPS-tracked 19 Red Kites, Milvus milvus, from the Central European population that crossed the Adriatic Sea on their autumn migration. Migratory tracks were annotated with weather data (wind support, side wind, temperature difference between air and surface—proxy for thermal uplift, cloud cover, and precipitation) to assess their effect on Red Kites' decisions and soaring performance along their migration across the Adriatic Sea and land. Results: Wind support affected the timing of crossing over the Adriatic Sea. We found that temperature differences and horizontal winds positively affected soaring sea movement by providing lift support in otherwise weak thermals. Furthermore, we found that the soaring patterns of tracked raptors were affected by the strength and direction of prevailing winds. Conclusion: Thanks to modern GPS-GSM telemetry devices and available data from online databases, we explored the effect of different weather variables on the occurrence of soaring behavior and soaring patterns of migratory raptors. We revealed how wind affected the soaring pattern and that tracked birds could soar in weak thermals by utilizing horizontal winds, thus reducing energy costs of active flapping flight over vast water bodies.
  • Data package
    Data from: Tracking the migration of red-necked stint (Calidris ruficollis) reveals marathon flights and unexpected conservation challenges
    (2020-10-09) Mu, Tong; Tomkovich, Pavel S.; Loktionov, Egor Y.; Syroechkovskiy, Evgeny E.; Wilcove, David S.
    Effective conservation of migratory species depends on understanding both migratory connectivity and migration strategy. The Red‐necked Stint Calidris ruficollis is a small, highly migratory sandpiper of the East Asian‐Australasian Flyway, which is classified as Near Threatened due to ongoing population declines. We tracked the migration of three Red‐necked Stints breeding in southern Chukotka, Russia, using geolocators, and supplemented our tracking data with re‐sighting records of color‐flagged individuals. The three birds, all of which bred within 2km of each other, wintered in three different localities spanning nearly 5,000km. One individual completed its northward migration of >9400 km in two marathon flights; the second leg of that journey was completed in a nonstop flight of 5,350 km. The successful conservation of just this one population requires protection of wintering sites across a vast area, coupled with key staging sites along the flyway. We suggest that other migratory species may pose similar conservation challenges.