Search Results

Now showing 1 - 10 of 18
  • Data package
    Data from: The price of being late: short- and long-term consequences of a delayed migration timing [naturally-timed birds]
    (2023-07-28) Bontekoe, Iris D.; Fiedler, Wolfgang; Wikelski, Martin; Flack, Andrea
    Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
  • Data package
    Data from: Fitness, behavioral, and energetic trade-offs of different migratory strategies in a partially migratory species
    (2023-08-03) Soriano-Redondo, Andrea; Franco, Aldina M.A.; Acácio, Marta; Payo-Payo, Ana; Martins, Bruno Herlander; Moreira, Francisco; Catry, Inês
    Alternative migratory strategies can coexist within animal populations and species. Anthropogenic impacts can shift the fitness balance between these strategies leading to changes in migratory behaviors. Yet some of the mechanisms that drive such changes remain poorly understood. Here we investigate the phenotypic differences, and the energetic, behavioral, and fitness trade-offs associated with four different movement strategies (long- and short-distance migration, and regional and local residency) in a population of white storks (Ciconia ciconia) that has shifted its migratory behavior over the last decades, from fully long-distance migration towards year-round residency. To do this, we tracked 75 adult storks fitted with GPS/GSM loggers with triaxial acceleration sensors over 5 years, and estimated individual displacement, behavior, and overall dynamic body acceleration, a proxy for activity-related energy expenditure. Additionally, we monitored nesting colonies to assess individual survival and breeding success. We found that long-distance migrants travelled thousands of kilometers more throughout the year, spent more energy, and >10% less time resting compared to short-distance migrants and residents. Long-distance migrants also spent on average more energy per unit of time while foraging, and less energy per unit of time while soaring. Migratory individuals also occupied their nests later than resident ones, later occupation led to later laying date and reduced number of fledglings. However, we did not find significant differences in survival probability. Finally, we found phenotypic differences in the migratory probability, as smaller-sized individuals were more likely to migrate, and they might be incurring in higher energetic and fitness costs than larger ones. Our results shed light into the shifting migratory strategies in a partially migratory population and highlight the nuances of anthropogenic impacts on species behavior, fitness, and evolutionary dynamics.
  • Data package
    Data from: Study "MPIAB Argos white stork tracking (1991-2017)"
    (2022-12-26) Berthold, Peter; Kaatz, Christoph; Kaatz, Michael; Querner, Ulrich; van den Bossche, Willem; Chernetsov, Nikita; Fiedler, Wolfgang; Wikelski, Martin
    Satellite tracking of white storks (Ciconia ciconia) was begun by the Max Planck Institute of Ornithology and collaborators in 1991. After solar-powered transmitters became available in 1995, extended battery life combined with the possibility to replace transmitters over time allowed monitoring the movements of individual storks across multiple migration seasons, with one individual, Prinzesschen, tracked for over a decade. Research efforts continue using primarily GSM-based tracking technologies. This dataset includes over 200 storks tagged in Belgium, Germany, Greece, Israel, Poland, Russia, South Africa, Spain and Switzerland. As noted in the deployment information, some movements are influenced by experimental manipulations. This long-term study confirms what previous several-year tracking studies of white storks had indicated: there can be great variability from year to year in the choice of winter quarters as well as in the routes and times of migration, intermediate destinations and stop-over periods, but constancy of winter quarters and migration routes is also possible. The variability may well be caused by external factors, of which food supply is probably predominant.
  • Data package
    Data from: The price of being late: short- and long-term consequences of a delayed migration timing [delayed birds]
    (2023-07-28) Bontekoe, Iris D.; Hilgartner, Roland; Altheimer, Sylvia; Flack, Andrea
    Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
  • Data package
    Data from: The price of being late: short- and long-term consequences of a delayed migration timing [control birds]
    (2023-07-28) Bontekoe, Iris D.; Flack, Andrea; Fiedler, Wolfgang
    Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
  • Data package
    Data from: Timing is critical: consequences of asynchronous migration for the performance and destination of a long-distance migrant
    (2023-07-25) Acácio, Marta; Catry, Inês; Soriano-Redondo, Andrea; Silva, João Paulo; Atkinson, Philip W.; Franco, Aldina M.A.
    Background: Migration phenology is shifting for many long-distance migrants due to global climate change, however the timing and duration of migration may influence the environmental conditions individuals encounter, with potential fitness consequences. Species with asynchronous migrations, i.e., with variability in migration timing, provide an excellent opportunity to investigate how of the conditions individuals experience during migration can vary and affect the migratory performance, route, and destination of migrants. Methods: Here, we use GPS tracking and accelerometer data to examine if timing of autumn migration influences the migratory performance (duration, distance, route straightness, energy expenditure) and migration destinations of a long-distance, asynchronous, migrant, the white stork (Ciconia ciconia). We also compare the weather conditions (wind speed, wind direction, and boundary layer height) encountered on migration and examine the influence of wind direction on storks’ flight directions. Results: From 2016 to 2020, we tracked 172 white storks and obtained 75 complete migrations from the breeding grounds in Europe to the sub-Saharan wintering areas. Autumn migration season spanned over a 3-month period (July–October) and arrival destinations covered a broad area of the Sahel, 2450 km apart, from Senegal to Niger. We found that timing of migration influenced both the performance and conditions individuals experienced: later storks spent fewer days on migration, adopted shorter and more direct routes in the Sahara Desert and consumed more energy when flying, as they were exposed to less supportive weather conditions. In the Desert, storks’ flight directions were significantly influenced by wind direction, with later individuals facing stronger easterly winds (i.e., winds blowing to the west), hence being more likely to end their migration in western areas of the Sahel region. Contrastingly, early storks encountered more supportive weather conditions, spent less energy on migration and were exposed to westerly winds, thus being more likely to end migration in eastern Sahel. Conclusions: Our results show that the timing of migration influences the environmental conditions individuals face, the energetic costs of migration, and the wintering destinations, where birds may be exposed to different environmental conditions and distinct threats. These findings highlight that on-going changes in migration phenology, due to environmental change, may have critical fitness consequences for long-distance soaring migrants.
  • Data package
    Data from: Study "LifeTrack White Stork SW Germany" (2013-2023)
    (2024-01-17) Fiedler, Wolfgang; Flack, Andrea; Schäfle, Wolfgang; Keeves, Brigitta; Quetting, Michael; Eid, Babette; Schmid, Heidi; Wikelski, Martin
    Human-induced changes in climate and environment are challenging the existence of migratory species. Species with diverse and flexible migratory behaviour suffer less from population decline, as they are more capable to respond by altering migratory behaviour. At the individual-level, variations in migratory behaviour may lead to differences in fitness and subsequently influence demographic dynamics. Using lifetime GPS bio-logging data from 169 white storks (Ciconia ciconia), we answer whether their recently shortened migration has survival benefit during the juvenile stage, the riskiest life period for many migrants. We also explore how other variations in migratory decisions (i.e. time, destination), movement activity (measured by the overall body dynamic acceleration), and early life conditions influence juveniles’ survival. We observed that first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risk. In addition, higher movement activity and overwintering “closer-to-home” in Europe and North Africa (84.21% of tracked individuals adopted this new strategy) were associated with higher survival. Our study shows how avian migrants can change life history decisions linked to fitness over few decades and thus helps us to understand and predict how migrants respond to the changing world.
  • Data package
    Data from: Study "LifeTrack White Stork Rheinland-Pfalz" (2015-2023)
    (2024-01-17) Fiedler, Wolfgang; Hilsendegen, Christiane; Reis, Christian; Lehmann, Jessica; Hilsendegen, Pirmin; Schmid, Heidi; Wikelski, Martin
    Human-induced changes in climate and environment are challenging the existence of migratory species. Species with diverse and flexible migratory behaviour suffer less from population decline, as they are more capable to respond by altering migratory behaviour. At the individual-level, variations in migratory behaviour may lead to differences in fitness and subsequently influence demographic dynamics. Using lifetime GPS bio-logging data from 169 white storks (Ciconia ciconia), we answer whether their recently shortened migration has survival benefit during the juvenile stage, the riskiest life period for many migrants. We also explore how other variations in migratory decisions (i.e. time, destination), movement activity (measured by the overall body dynamic acceleration), and early life conditions influence juveniles’ survival. We observed that first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risk. In addition, higher movement activity and overwintering “closer-to-home” in Europe and North Africa (84.21% of tracked individuals adopted this new strategy) were associated with higher survival. Our study shows how avian migrants can change life history decisions linked to fitness over few decades and thus helps us to understand and predict how migrants respond to the changing world.
  • Data package
    Data from: Study "LifeTrack White Stork Bavaria" (2014-2023)
    (2024-01-17) Fiedler, Wolfgang; Leppelsack, Elke; Leppelsack, Hans; Stahl, Thomas; Wieding, Oda; Wikelski, Martin
    Human-induced changes in climate and environment are challenging the existence of migratory species. Species with diverse and flexible migratory behaviour suffer less from population decline, as they are more capable to respond by altering migratory behaviour. At the individual-level, variations in migratory behaviour may lead to differences in fitness and subsequently influence demographic dynamics. Using lifetime GPS bio-logging data from 169 white storks (Ciconia ciconia), we answer whether their recently shortened migration has survival benefit during the juvenile stage, the riskiest life period for many migrants. We also explore how other variations in migratory decisions (i.e. time, destination), movement activity (measured by the overall body dynamic acceleration), and early life conditions influence juveniles’ survival. We observed that first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risk. In addition, higher movement activity and overwintering “closer-to-home” in Europe and North Africa (84.21% of tracked individuals adopted this new strategy) were associated with higher survival. Our study shows how avian migrants can change life history decisions linked to fitness over few decades and thus helps us to understand and predict how migrants respond to the changing world.
  • Data package
    Data from: Study "LifeTrack White Stork Oberschwaben" (2014-2023)
    (2024-01-16) Fiedler, Wolfgang; Flack, Andrea; Schmidt, Andreas; Reinhard, Ute; Wikelski, Martin
    Human-induced changes in climate and environment are challenging the existence of migratory species. Species with diverse and flexible migratory behaviour suffer less from population decline, as they are more capable to respond by altering migratory behaviour. At the individual-level, variations in migratory behaviour may lead to differences in fitness and subsequently influence demographic dynamics. Using lifetime GPS bio-logging data from 169 white storks (Ciconia ciconia), we answer whether their recently shortened migration has survival benefit during the juvenile stage, the riskiest life period for many migrants. We also explore how other variations in migratory decisions (i.e. time, destination), movement activity (measured by the overall body dynamic acceleration), and early life conditions influence juveniles’ survival. We observed that first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risk. In addition, higher movement activity and overwintering “closer-to-home” in Europe and North Africa (84.21% of tracked individuals adopted this new strategy) were associated with higher survival. Our study shows how avian migrants can change life history decisions linked to fitness over few decades and thus helps us to understand and predict how migrants respond to the changing world.