Taxon:
Morus bassanus

No Thumbnail Available
Scientific Name
Morus bassanus
Common Name
Northern Gannet
Taxa Group
Sulidae
Environment
Move Mode

Search Results

Now showing 1 - 4 of 4
  • Data package
    Data from: HPAIV outbreak triggers short‐term colony connectivity in a seabird metapopulation
    (2024-09-24) Jeglinski, Jana W. E.; Lane, Jude V.; Votier, Stephen C.; Furness, Robert W.; Hamer, Keith C.; McCafferty, Dominic J.; Nager, Ruedi; Sheddan, Maggie; Wanless, Sarah; Matthiopoulos, Jason
    Disease outbreaks can drastically disturb the environment of surviving animals, but the behavioural, ecological, and epidemiological consequences of disease-driven disturbance are poorly understood. Here, we show that an outbreak of High Pathogenicity Avian Influenza Virus (HPAIV) coincided with unprecedented short-term behavioural changes in Northern gannets (Morus bassanus). Breeding gannets show characteristically strong fidelity to their nest sites and foraging areas (2015–2019; n = 120), but during the 2022 HPAIV outbreak, GPS-tagged gannets instigated long-distance movements beyond well-documented previous ranges and the first ever recorded visits of GPS-tagged adults to other gannet breeding colonies. Our findings suggest that the HPAIV outbreak triggered changes in space use patterns of exposed individuals that amplified the epidemiological connectivity among colonies and may generate super-spreader events that accelerate disease transmission across the metapopulation. Such self-propagating transmission from and towards high density animal aggregations may explain the unexpectedly rapid pan-European spread of HPAIV in the gannet.
  • Data package
    Data from: Strong breeding colony fidelity in northern gannets following high pathogenicity avian influenza HPAIV outbreak
    (2024-09-24) Jeglinski, Jana W. E.; Matthiopoulos, Jason; Votier, Stephen C.; Lane, Jude V.
    High pathogenicity avian influenza virus (HPAIV) caused the worst seabird mass-mortalities in Europe across 2021–2022. The northern gannet (Morus bassanus) was one of the most affected species, with tens of thousands of casualties in the northeast Atlantic between April–September 2022. Disease outbreaks can modify the movement ecology of animals by diminishing spatial consistency, thereby increasing the potential for disease transmission. To detect potential changes in movement behaviour, we GPS-tracked breeding adults following the initial HPAIV outbreak, at three of the largest northern gannet breeding colonies where major mortality of adults and chicks occurred (Bass Rock, Scotland, UK; Grassholm, Wales, UK; Rouzic, Brittany, France). We also gathered background epidemiological information and northern gannet colony dynamics during the outbreak. Our data indicate that HPAIV killed at least 50 % of northern gannets, and suggest the presence of HPAIV H5N1 antibodies in juveniles. GPS-tracked adult northern gannets remained faithful to their breeding sites despite the HPAIV outbreak and did not prospect other breeding colonies. They performed regular foraging trips at sea, similar to their behaviour before the outbreak. Comparison with GPS-tracking data gathered in 2019, i.e. before the HPAIV outbreak, suggested lower foraging effort in birds which survived HPAIV in 2022, potentially as a consequence of reduced intra- and interspecific food competition. Breeding colony fidelity of surviving adult northern gannets following HPAIV mass-mortalities indicates limited capacity for viral spread during our study. This may contrast with the behaviour of adults during the initial disease outbreak, and with that of younger individuals.
  • Data package
    Data from: Study "Northern Gannet Breeding Season GPS Data from Cape St. Mary's, NL, Canada: 2019 to 2022"
    (2023-05-01) d'Entremont, Kyle J.N.; Davoren, Gail K.; Montevecchi, William A.
    Seabirds are constrained by central-place foraging during breeding, when the energy obtained from prey must outweigh the costs of travel, search, capture and transport. The distribution and phenology of the cold-blooded marine fishes they exploit are heavily influenced by oceanic climate. Northern gannets, the largest breeding seabird in the North Atlantic, use a generalist foraging strategy, preying on a wide array of pelagic fishes. They employ different for- aging tactics for different prey types, with rapid, shallow V-shaped dives used for large, powerful prey such as mackerel, and U-shaped dives for smaller forage fishes like capelin. Here we assess intra- and inter-annual differences in foraging effort and influences of prey availability at the southernmost colony of the species at Cape St. Mary’s, Newfoundland, Canada. We compared for- aging trip characteristics (total and maximum distance, directness, duration and number of dives) of parental gannets during the breeding seasons of 2019 (n = 10) and 2020 (n = 7) using GPS/time- depth recorders. Individual gannets shifted away from using U-shaped dives in early chick- rearing to primarily V-shaped dives in late chick-rearing. Shifts were abrupt and occurred in mid-August in 2019 and 2020. Maximum and total foraging trip distance and duration were sig- nificantly greater during early chick-rearing in 2020 than in 2019. Kernel density 50% utilization distributions were larger and expanded further from the colony during early chick-rearing in 2020 (7297 ± 1419 km2; mean ± SE) than 2019 (2382 ±797 km2). Increased foraging effort during early chick-rearing in 2020 was likely due to decreased capelin availability, resulting from earlier spawning, and greater variation in the timing of spawning among sites, which may have been influenced by warmer waters.
  • Data package
    Data from: Changes in behaviour drive inter‐annual variability in the at‐sea distribution of northern gannets
    (2017-08-01) Warwick-Evans, Victoria; Soanes, Louise M.; Gauvain, Roland D.; Atkinson, Philip W.; Arnould, John P.Y.; Green, Jon A.
    The at-sea distribution of seabirds primarily depends on the distance from their breeding colony, and the abundance, distribution and predictability of their prey, which are subject to strong spatial and temporal variation. Many seabirds have developed flexible foraging strategies to deal with this variation, such as increasing their foraging effort or switching to more predictable, less energy dense, prey, in poor conditions. These responses may vary both within and between individuals, and understanding this variability is vital to predict the population-level impacts of spatially explicit environmental disturbances, such as offshore windfarms. We conducted a multi-year tracking study in order to investigate the inter-annual variation in the foraging behaviour and location of a population of northern gannets breeding on Alderney in the English Channel. To do so, we investigated the link between individual-level behaviour and population-level behaviour. We found that a sample of gannets tracked in 2015 had longer trip durations, travelled further from the colony and had larger core foraging areas and home range areas than gannets tracked in previous years. This inter-annual variation may be associated with oceanographic conditions indexed by the North Atlantic Oscillation (NAO). Our findings suggest that this inter-annual variation was driven by individuals visiting larger areas in all of their trips rather than individuals diversifying to visit more, distinct areas. These findings suggest that, for gannets at least, if prey becomes less abundant or more widely distributed, more individuals may be required to forage further from the colony, thus increasing their likelihood of encountering pressures from spatially explicit anthropogenic disturbances.