Taxon:
Cathartes aura

No Thumbnail Available
Scientific Name
Cathartes aura
Common Name
Turkey Vulture
Taxa Group
Cathartidae
Environment
Move Mode

Search Results

Now showing 1 - 2 of 2
  • Data package
    Data from: Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America
    (2014-04-14) Bildstein, Keith L.; Barber, David; Bechard, Marc J.
    NOTE: An updated and larger version of this dataset is available. See https://doi.org/10.5441/001/1.f3qt46r2. ABSTRACT: Variation is key to the adaptability of species and their ability to survive changes to the Earth’s climate and habitats. Plasticity in movement strategies allows a species to better track spatial dynamics of habitat quality. We describe the mechanisms that shape the movement of a long-distance migrant bird (turkey vulture, Cathartes aura) across two continents using satellite tracking coupled with remote-sensing science. Using nearly 10 years of data from 24 satellite-tracked vultures in four distinct populations, we describe an enormous amount of variation in their movement patterns. We related vulture movement to environmental conditions and found important correlations explaining how far they need to move to find food (indexed by the normalized difference vegetation index) and how fast they can move based on the prevalence of thermals and temperature. We conclude that the extensive variability in the movement ecology of turkey vultures, facilitated by their energetically efficient thermal soaring, suggests that this species is likely to do well across periods of modest climate change. The large scale and sample sizes needed for such analysis in a widespread migrant emphasizes the need for integrated and collaborative efforts to obtain tracking data and for policies, tools and open datasets to encourage such collaborations and data sharing.
  • Data package
    Data from: Wing size but not wing shape is related to migratory behavior in a soaring bird
    (2016-12-21) Bildstein, Keith L.; Barber, David; Bechard, Marc J.; Graña Grilli, Maricel
    NOTE: An updated and larger version of this dataset is available. See https://doi.org/10.5441/001/1.f3qt46r2. ABSTRACT: Both wing size and wing shape affect the flight abilities of birds. Intra and inter-specific studies have revealed a pattern where high aspect ratio and low wing loading favour migratory behaviour. This, however, have not been studied in soaring migrants. We assessed the relationship between the wing size and shape and the characteristics of the migratory habits of the turkey vulture (Cathartes aura), an obligate soaring migrant. We compared wing size and shape with migration strategy among three fully migratory, one partially migratory and one non-migratory (resident) population distributed across the American continent. We calculated the aspect ratio and wing loading using wing tracings to characterize the wing morphology. We used satellite-tracking data from the migratory populations to calculate distance, duration, speed and altitude during migration. Wing loading, but not aspect ratio, differed among the populations, segregating the resident population from the completely migratory ones. Unlike it has been reported in species using flapping flight during migration, the migratory flight parameters of turkey vultures were not related to the aspect ratio. By contrast, wing loading was related to most flight parameters. Birds with lower wing loading flew farther, faster, and higher during their longer journeys. Our results suggest that wing morphology in this soaring species enables lower-cost flight, through low wing-loading, and that differences in the relative sizes of wings may increase extra savings during migration. The possibility that wing shape is influenced by foraging as well as migratory flight is discussed. We conclude that flight efficiency may be improved through different morphological adaptations in birds with different flight mechanisms.