Taxon:
Gyps africanus

No Thumbnail Available
Scientific Name
Gyps africanus
Common Name
White-backed Vulture
Taxa Group
Accipitridae
Environment
Move Mode

Search Results

Now showing 1 - 3 of 3
  • Data package
    Data from: Suite of simple metrics reveals common movement syndromes across vertebrate taxa
    (2017-06-01) Abrahms, Briana
    Background: Because empirical studies of animal movement are most-often site- and species-specific, we lack understanding of the level of consistency in movement patterns across diverse taxa, as well as a framework for quantitatively classifying movement patterns. We aim to address this gap by determining the extent to which statistical signatures of animal movement patterns recur across ecological systems. We assessed a suite of movement metrics derived from GPS trajectories of thirteen marine and terrestrial vertebrate species spanning three taxonomic classes, orders of magnitude in body size, and modes of movement (swimming, flying, walking). Using these metrics, we performed a principal components analysis and cluster analysis to determine if individuals organized into statistically distinct clusters. Finally, to identify and interpret commonalities within clusters, we compared them to computer-simulated idealized movement syndromes representing suites of correlated movement traits observed across taxa (migration, nomadism, territoriality, and central place foraging). Results: Two principal components explained 70% of the variance among the movement metrics we evaluated across the thirteen species, and were used for the cluster analysis. The resulting analysis revealed four statistically distinct clusters. All simulated individuals of each idealized movement syndrome organized into separate clusters, suggesting that the four clusters are explained by common movement syndrome. Conclusions: Our results offer early indication of widespread recurrent patterns in movement ecology that have consistent statistical signatures, regardless of taxon, body size, mode of movement, or environment. We further show that a simple set of metrics can be used to classify broad-scale movement patterns in disparate vertebrate taxa. Our comparative approach provides a general framework for quantifying and classifying animal movements, and facilitates new inquiries into relationships between movement syndromes and other ecological processes.
  • Data package
    Data from: Factors influencing foraging search efficiency: Why do scarce lappet-faced vultures outperform ubiquitous white-backed vultures? (V2)
    (2014-11-24) Spiegel, Orr M.; Getz, Wayne M.; Nathan, Ran
    The search phase is a critical component of foraging behavior, affecting interspecific competition and community dynamics. Nevertheless, factors determining interspecific variation in search efficiency are still poorly understood. We studied differences in search efficiency between the lappet-faced vulture (Torgos tracheliotus; LFV) and the white-backed vulture (Gyps africanus; WBV) foraging on spatiotemporally unpredictable carcasses in Etosha National Park, Namibia. We used experimental food supply and high-resolution GPS tracking of free-ranging vultures to quantify search efficiency and elucidate the factors underlying the observed interspecific differences using a biased correlated random walk simulation model bootstrapped with the GPS tracking data. We found that LFV’s search efficiency was higher than WBV’s in both first-to-find, first-to-land, and per-individual-finding rate measures. Modifying species-specific traits in the simulation model allows us to assess the relative role of each factor in LFV’s higher efficiency. Interspecific differences in morphology (through the effect on perceptual range and motion ability) and searchers’ spatial dispersion (due to different roost arrangements) are in correspondence with the empirically observed advantage of LFV over WBV searchers, whereas differences in other aspects of the movement patterns appear to play a minor role. Our results provide mechanistic explanations for interspecific variation in search efficiency for species using similar resources and foraging modes.
  • Data package
    Data from: Factors influencing foraging search efficiency: Why do scarce lappet-faced vultures outperform ubiquitous white-backed vultures?
    (2014-09-24) Spiegel, Orr M.; Getz, Wayne M.; Nathan, Ran
    NOTE: A corrected version of this dataset is available. See doi:10.5441/001/1.mf903197 at datarepository.movebank.org/handle/10255/move.401. ABSTRACT: The search phase is a critical component of foraging behavior, affecting interspecific competition and community dynamics. Nevertheless, factors determining interspecific variation in search efficiency are still poorly understood. We studied differences in search efficiency between the lappet-faced vulture (Torgos tracheliotus; LFV) and the white-backed vulture (Gyps africanus; WBV) foraging on spatiotemporally unpredictable carcasses in Etosha National Park, Namibia. We used experimental food supply and high-resolution GPS tracking of free-ranging vultures to quantify search efficiency and elucidate the factors underlying the observed interspecific differences using a biased correlated random walk simulation model bootstrapped with the GPS tracking data. We found that LFV’s search efficiency was higher than WBV’s in both first-to-find, first-to-land, and per-individual-finding rate measures. Modifying species-specific traits in the simulation model allows us to assess the relative role of each factor in LFV’s higher efficiency. Interspecific differences in morphology (through the effect on perceptual range and motion ability) and searchers’ spatial dispersion (due to different roost arrangements) are in correspondence with the empirically observed advantage of LFV over WBV searchers, whereas differences in other aspects of the movement patterns appear to play a minor role. Our results provide mechanistic explanations for interspecific variation in search efficiency for species using similar resources and foraging modes.