Taxon:
Canis latrans

No Thumbnail Available
Scientific Name
Canis latrans
Common Name
Coyote
Taxa Group
Canidae
Environment
Move Mode

Search Results

Now showing 1 - 3 of 3
  • Data package
    Data from: Uncovering behavioural states from animal activity and site fidelity patterns
    (2017-10-23) Mahoney, Peter J.; Ebinger, Michael; Jaeger, Michael; Shivik, John A.; Young, Julie K.
    (1) Space use by animals has important implications for individual fitness. However, resource requirements often vary throughout the course of a lifetime and are a reflection of the demands associated with daily tasks or specific life-history phases, from food acquisition to reproduction, and emphasize the need to classify resource selection relative to specific behavioural states. Site fidelity is often indicative of behaviours important for individual maintenance (e.g. foraging), species' life history (e.g. seasonal site selection), social communication (e.g. scent-marking) and species interactions (e.g. predation, competition). Thus, resolving site fidelity patterns associated with key behaviours is essential to accurately quantify behavioural-dependent resource needs and the fitness consequences of space use. (2) We propose a novel method for identifying site fidelity patterns in animal location data using a convex hull clustering program called R Animal Site Fidelity (rASF). We also provide a means of integrating activity as a measure of behavioural state. We demonstrate the utility of the approach in identifying cougar (Puma concolor) predation events, coyote (Canis latrans) den and rendezvous sites, and coyote territorial boundaries. (3) We parameterized rASF based on site fidelity characteristics that best characterized the clustering behaviour of interest and estimated behavioural state from either dual-axial accelerometer data or movement trajectory statistics. When behaviour was used in conjunction with cluster-specific metrics (duration, proportion of diurnal fixes and landscape composition), we could accurately predict prey species associated with cougar kills and differentiate pup-rearing from scent-marking sites in coyotes. (4) Site fidelity patterns and activities associated with animal revisitation will be key to identifying the behavioural motivations behind observed patterns of space use. Our approach provides an efficient, rigorous and repeatable means of identifying site fidelity patterns associated with specific behavioural states without the need for direct observations, which are often impossible to collect at large spatial scales and in dense habitat. As such, this framework has significant potential to inform theory in behavioural ecology while providing managers with better resolution on appropriate management targets associated with key aspects of a species' life history.
  • Data package
    Data from: Eastern coyote home range, habitat selection and survival in the Albany pine bush landscape
    (2019-12-10) Bogan, Daniel A.; Kays, Roland
    In the northeast USA, top mammalian predators were extirpated through persecution and habitat loss. The coyote (Canis latrans) expanded into the northeast taking advantage of this vacant predator niche. Since 1970, coyotes have been widespread across all of mainland New York, yet no study has examined how well coyotes survive in suburban areas in this region and little is known of their ecological roles or potential to conflict with people. This information is important because in western states coyotes have high survival rates, a high degree of urban association and cause conflict with people. I studied survivorship and correlates of cause-specific mortality of coyotes using radio telemetry. The annual survival rate was 0.20 ± 0.14. There were no differences in survival rates between sexes, age classes, home range location, or capture methods. Collisions with vehicles (n = 7) and shooting (n = 6) accounted for the 2 major mortality factors. Coyotes that were killed by vehicles crossed roads more often than all other coyotes, though they did not have more roads within their home ranges. Coyotes that were shot had a larger mean and maximum open habitat patch size within their home ranges. High exploitation of the local coyote population may cause coyotes to avoid human-developed lands thus reducing the potential for negative interactions with people. I concurrently studied home range and habitat selection of coyotes in the suburban Albany Pine Bush landscape. Fixed kernel and minimum convex polygon (95%) home ranges (n = 17) averaged 6.81 km2 and 5.75 km2, respectively. Habitat analysis revealed that coyotes selected for natural habitat and avoided residential and commercial lands when locating a home range area and moving within the home range. Compositional analysis additionally ranked natural habitat as the most selected habitat at 2 spatial scales of selection (62.3% and 74.5%). Coyotes lived in small home ranges and primarily used the remaining natural lands in the suburban landscape. These results indicate that local coyotes maintain a natural ecological role and under existing conditions do not currently pose a threat to people and pets living adjacent to natural lands.
  • Data package
    Data from: Study "GPS tracking of bobcats and coyotes in northern Washington"
    (2023-05-19) Prugh, Laura R.
    The challenge that large carnivores face in coexisting with humans calls into question their ability to carry out critical ecosystem functions such as mesopredator suppression outside protected areas. In this study, we examined the movements and fates of mesopredators and large carnivores across rural landscapes characterized by substantial human influences. Mesopredators shifted their movements toward areas with twofold-greater human influence in regions occupied by large carnivores, indicating that they perceived humans to be less of a threat. However, rather than shielding mesopredators, human-caused mortality was more than three times higher than large carnivore–caused mortality. Mesopredator suppression by apex predators may thus be amplified, rather than dampened, outside protected areas, because fear of large carnivores drives mesopredators into areas of even greater risk from human super predators.