Sensor:
Solar Geolocator Raw

No Thumbnail Available
Name
Solar Geolocator Raw
External ID
solar-geolocator-raw
Is Location Sensor

Search Results

Now showing 1 - 10 of 19
  • Data package
    Data from: Trans-equatorial migration links oceanic frontal habitats across the Pacific Ocean: year-round movements and foraging activity of a small gadfly petrel
    (2024-01-22) Clay, Thomas A.; Brooke, MdeL.
    Gadfly petrels are among the widest-ranging birds and inhabit oceanic regions beyond the legislative protection of national jurisdictions (the High Seas). Detailed information on breeding phenology, at-sea distributions, and habitat requirements is crucial for understanding threats and designing conservation measures for this highly threatened group. We tracked 10 Stejneger’s petrels Pterodroma longirostris, endemic to Isla Alejandro Selkirk, Juan Fernández Islands in the southeast Pacific Ocean, with geolocator-immersion loggers over two years to examine year-round movements, phenology, habitat use, and activity patterns. Birds conducted round-trip trans-equatorial migrations of 54,725 km to the northwest Pacific Ocean between Hawaii and Japan. Across the boreal summer, birds followed the c. 1000 km northward movement of the North Pacific Transition Zone Chlorophyll Front, before their return migration which took a long detour south toward New Zealand before heading east at 40–50°S, presumably benefitting from Antarctic circumpolar winds. To our knowledge, a comparable triangular migration is unique among seabirds. During the pre-laying exodus, birds traveled southwest to the Sub-Antarctic Front, and unlike congeners, there was no evidence of sexual segregation. Foraging areas during incubation were similar to pre-laying, with trips lasting 13 d and taking birds up to 4810 km southwest of the colony. Petrels spent > 75% of their time flying during breeding and migration, yet flight activity was substantially lower during non-breeding, presumably due to flight feather molt. Birds spent 87% of their time at sea within the High Seas and their apparent preference for oceanic frontal regions demonstrates the importance of protecting these remote habitats.
  • Data package
    Data from: Spatiotemporally variable snow properties drive habitat use of an Arctic mesopredator
    (2023-08-16) Glass, Thomas W.; Robards, Martin D.
    Climate change is rapidly altering the composition and availability of snow, with implications for snow-affected ecological processes, including reproduction, predation, habitat selection, and migration. How snowpack changes influence these ecological processes is mediated by physical snowpack properties, such as depth, density, hardness, and strength, each of which is in turn affected by climate change. Despite this, it remains difficult to obtain meaningful snow information relevant to the ecological processes of interest, precluding a mechanistic understanding of these effects. This problem is acute for species that rely on particular attributes of the subnivean space, for example depth, thermal resistance, and structural stability, for key life-history processes like reproduction, thermoregulation, and predation avoidance. We used a spatially explicit snow evolution model to investigate how habitat selection of a species that uses the subnivean space, the wolverine, is related to snow depth, snow density, and snow melt on Arctic tundra. We modeled these snow properties at a 10 m spatial and a daily temporal resolution for 3 years, and used integrated step selection analyses of GPS collar data from 21 wolverines to determine how these snow properties influenced habitat selection and movement. We found that wolverines selected deeper, denser snow, but only when it was not undergoing melt, bolstering the evidence that these snow properties are important to species that use the Arctic snowpack for subnivean resting sites and dens. We discuss the implications of these findings in the context of climate change impacts on subnivean species.
  • Data package
    Data from: Study "Switzerland Biel - Long term study on migratory movement of Alpine swifts (Apus melba)"
    (2020-11-26) Meier, Christoph M.; Liechti, Felix
    For migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
  • Data package
    Data from: A pan-European, multi-population assessment of migratory connectivity in a near-threatened migrant bird
    (2015-07-22) Finch, Tom; Saunders, Philip; Catry, Inês; Mardega, Ieva; Mayet, Patrick; Račinskis, Edmunds; Sackl, Peter; Schwartz, Timothée; Tiefenbach, Michael; Hewson, Chris; Franco, Aldina; Butler, Simon James
    Aim: The extent to which individuals from different breeding populations mix throughout the non-breeding season (i.e. ‘migratory connectivity’) has important consequences for population dynamics and conservation. Given recent declines of long-distance migrant birds, multi-population tracking studies are crucial in order to assess the strength of migratory connectivity and to identify key sites en route. Here, we present the first large-scale analysis of migration patterns and migratory connectivity in the globally near-threatened European roller Coracias garrulus. Location: Breeding area: Europe; passage area: Mediterranean, sub-Saharan Africa, Arabian Peninsula; wintering area: southern Africa Methods: We synthesise new geolocator data with existing geolocator, satellite tag and ring recovery data from eight countries across Europe. We describe routes and stopover sites, analyse the spatial pattern of winter sites with respect to breeding origin, and quantify the strength of connectivity between breeding and winter sites. Results: We demonstrate the importance of the northern savannah zone as a stopover region and reveal the easterly spring loop (via Arabia) and leap-frog migration of rollers from eastern populations. Whilst there was some overlap between individuals from different populations over winter, their distribution was non-random, with positive correlations between breeding and autumn/winter longitude as well as between pairwise distance matrices of breeding and winter sites. Connectivity was stronger for eastern populations than western ones. Main conclusions: The moderate levels of connectivity detected here may increase the resilience of breeding populations to localised habitat loss on the winter quarters. We also highlight passage regions crucial for the successful conservation of Roller populations, including the Sahel/Sudan savannah for all populations, and the Horn of Africa/Arabian Peninsula for north-eastern rollers.
  • Data package
    Data from: Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird
    (2017-02-01) Cooper, Nathan W.; Hallworth, Michael T.; Marra, Peter P.
    The importance of understanding the geographic distribution of the full annual cycle of migratory birds has been increasingly highlighted over the past several decades. However, the difficulty of tracking small birds between breeding and wintering areas has hindered progress in this area. To learn more about Kirtland's warbler Setophaga kirtlandii movement patterns throughout the annual cycle, we deployed archival light-level geolocators across their breeding range in Michigan. We recovered devices from 27 males and analyzed light-level data within a Bayesian framework. We found that most males wintered in the central Bahamas and exhibited a loop migration pattern. In both fall and spring, departure date was the strongest predictor of arrival date, but in spring, stopover duration and migration distance were also important. Though stopover strategies varied, males spent the majority of their spring migration at stopover sites, several of which were located just before or after large ecological barriers. We argue that loop migration is likely a response to seasonal variation in prevailing winds. By documenting a tight link between spring departure and arrival dates, we provide a plausible mechanism for previously documented carry-over effects of winter rainfall on reproductive success in this species. The migratory periods remain the least understood periods for all birds, but by describing Kirtland's warbler migration routes and timing, and identifying locations of stopover sites, we have begun the process of better understanding the dynamics of their full annual cycle. Moreover, we have provided managers with valuable information on which to base future conservation and research priorities.
  • Data package
    Data from: Tracking the migration of a nocturnal aerial insectivore in the Americas
    (2017-04-07) English, Philina A.; Mills, Alexander M.; Cadman, Michael D.; Heagy, Audrey E.; Rand, Greg J.; Green, David J.; Nocera, Joseph J.
    Background: Populations of Eastern Whip-poor-will (Antrostomus vociferous) appear to be declining range-wide. While this could be associated with habitat loss, declines in populations of many other species of migratory aerial insectivores suggest that changes in insect availability and/or an increase in the costs of migration could also be important factors. Due to their quiet, nocturnal habits during the non-breeding season, little is known about whip-poor-will migration and wintering locations, or the extent to which different breeding populations share risks related to non-breeding conditions. Results: We tracked 20 males and 2 females breeding in four regions of Canada using geolocators. Wintering locations ranged from the gulf coast of central Mexico to Costa Rica. Individuals from the northern-most breeding site and females tended to winter furthest south, although east-west connectivity was low. Four individuals appeared to cross the Gulf of Mexico either in spring or autumn. On southward migration, most individuals interrupted migration for periods of up to 15 days north of the Gulf, regardless of their subsequent route. Fewer individuals showed signs of a stopover in spring. Conclusions: Use of the southeastern United States for migratory stopover and a concentration of wintering locations in Guatemala and neighbouring Mexican provinces suggest that both of these regions should be considered potentially important for Canadian whip-poor-wills. This species shows some evidence of both "leapfrog" and sex-differential migration, suggesting that individuals in more northern parts of their breeding range could have higher migratory costs.
  • Data package
    Data from: White-crested Elaenias (Elaenia albiceps chilensis) breeding across Patagonia exhibit similar spatial and temporal movement patterns throughout the year
    (2024-04-02) Jara, Rocío Fernanda; Jiménez, Jaime Enrique; Ricardo, Rozzi
    For migratory birds, events happening during any period of their annual cycle can have strong carry-over effects on the subsequent periods. The strength of carry-over effects between non-breeding and breeding grounds can be shaped by the degree of migratory connectivity: whether or not individuals that breed together also migrate and/or spend the non-breeding season together. We assessed the annual cycle of the White-crested Elaenia (Elaenia albiceps chilensis), the longest-distance migrant flycatcher within South America, which breeds in Patagonia and spends the non-breeding season as far north as Amazonia. Using light-level geolocators, we tracked the annual movements of elaenias breeding on southern Patagonia and compared it with movements of elaenias breeding in northern Patagonia (1,365 km north) using Movebank Repository data. We found that elaenias breeding in southern Patagonia successively used two separate non-breeding regions while in their Brazilian non-breeding grounds, as already found for elaenias breeding in the northern Patagonia site. Elaenias breeding in both northern and southern Patagonia also showed high spread in their non-breeding grounds, high non-breeding overlap among individuals from both breeding sites, and similar migration phenology, all of which suggests weak migratory connectivity for this species. Elucidating the annual cycle of this species, with particular emphasis on females and juveniles, still requires further research across a wide expanse of South America. This information will be critical to understanding and possibly predicting this species’ response to climate change and rapid land-use changes.
  • Data package
    Data from: Migratory routes of red-necked phalaropes Phalaropus lobatus breeding in southern Chukotka revealed by geolocators
    (2018-06-13) Mu, Tong; Tomkovich, Pavel S.; Loktionov, Egor Y.; Syroechkovskiy, Evgeny E.; Wilcove, David S.
    The migration routes of Red‐necked Phalaropes breeding around the Bering Sea are poorly known, despite the fact that the Bering Sea could mark the boundary between the East Palearctic populations that winter in the Pacific Ocean around the East Indies and the West Nearctic populations that winter in the Pacific Ocean off the coast of South America. Geolocator data retrieved from two male phalaropes tagged in southern Chukotka, Far Eastern Russia, confirm that birds breeding in this region belong to the East Palearctic population and winter in the East Indies, suggesting that the division line with the West Nearctic population is farther to the East. The routes taken by the two phalaropes were almost entirely pelagic, totaling around 18,000–20,000 km round‐trip, with the birds continuously on the move during migration, rather than resident in any particular stopover site, contrary to most other migratory shorebirds.
  • Data package
    Data from: Breeding latitude predicts timing but not rate of spring migration in a widespread migratory bird in South America
    (2019-04-01) Jahn, Alex E.; Cereghetti, Joaquín; Cueto, Victor R.; Hallworth, Michael T.; Levey, Douglas J.; Marini, Miguel Â.; Masson, Diego; Pizo, Marco A.; Sarasola, José Hernán; Tuero, Diego T.
    (1) Identifying the processes that determine avian migratory strategies in different environmental contexts is imperative to understanding the constraints to survival and reproduction faced by migratory birds across the planet. (2) We compared the spring migration strategies of Fork-tailed Flycatchers (Tyrannus s. savana) that breed at south-temperate latitudes (i.e., austral migrants) vs. tropical latitudes (i.e., intra-tropical migrants) in South America. We hypothesized that austral migrant flycatchers are more time-selected than intra- tropical migrants during spring migration. As such, we predicted that that austral migrants, which migrate further than intra-tropical migrants, will migrate at a faster rate and that the rate of migration for austral migrants will be positively correlated with the onset of spring migration. (3) We attached light-level geolocators to Fork-tailed Flycatchers at two tropical breeding sites in Brazil and at two south-temperate breeding sites in Argentina and tracked their movements until the following breeding season. (4) Of 286 geolocators that were deployed, 37 were recovered ~1 year later, of which 28 provided useable data. Rate of spring migration did not differ significantly between the two groups, and only at one site was there a significantly positive relationship between date of initiation of spring migration and arrival date. (5) This represents the first comparison of individual migratory strategies among conspecific passerines breeding at tropical vs. temperate latitudes and suggests that austral migrant Fork-tailed Flycatchers in South America are not more time- selected on spring migration than intra-tropical migrant conspecifics. Low sample sizes could have diminished our power to detect differences (e.g., between sexes), such that further research into the mechanisms underpinning migratory strategies in this poorly understood system is necessary.
  • Data package
    Data from: Migration of red-backed shrikes from the Iberian Peninsula: optimal or sub-optimal detour?
    (2017-03-23) Tøttrup, Anders P.; Pedersen, Lykke; Onrubia, Alejandro; Thorup, Kasper
    NOTE: An updated and larger version of this dataset is available. See https://doi.org/10.5441/001/1.4bt7365c. ABSTRACT: The current Northern Hemisphere migration systems are believed to have arisen since the last glaciation. In many cases, birds do not migrate strait from breeding to non-breeding areas but fly via a detour. All western European populations of red-backed shrikes Lanius collurio are assumed to reach their southern African wintering grounds detouring via southeast Europe. Based on theoretical considerations under an optimality framework this detour is apparently optimal. Here, we use individual geolocator data on red-backed shrikes breeding in Spain to show that these birds do indeed detour via southeast Europe en route to southern Africa where they join other European populations of red-backed shrikes and return via a similar route in spring. Disregarding potential wind assistance, the routes taken for the tracked birds in autumn were not optimal compared to crossing the barrier directly. For spring migration the situation was quite different with the detour apparently being optimal. However, when considering potential wind assistance estimated total air distances during autumn migration were overall similar and the barrier crossing shorter along the observed routes. We conclude that considering the potential benefit of wind assistance makes the route via southeast Europe likely to be less risky in autumn. However, it cannot be ruled out that other factors, such as following a historical colonisation route could still be important.