Sensor:
Acceleration

No Thumbnail Available
Name
Acceleration
External ID
acceleration
Is Location Sensor

Search Results

Now showing 1 - 10 of 20
  • Data package
    Data from: Turbulence causes kinematic and behavioural adjustments in a flapping flier
    (2024-02-20) Lempidakis, Emmanouil; Ross, Andrew N.; Quetting, Michael; Krishnan, Krishnamoorthy; Garde, Baptiste; Wikelski, Martin; Shepard, Emily L.C.
    Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort, and track properties of homing pigeons (Columba livia), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same. Mean kinematic responses to turbulence may therefore enable birds to increase their stability without a reduction in propulsive efficiency. Nonetheless, the most marked response to turbulence was an increase in the variability of wingbeat frequency and amplitude. These stroke-to-stroke changes in kinematics provide instantaneous compensation for turbulence. They will also increase flight costs. Yet pigeons only made small adjustments to their flight altitude, likely resulting in little change in exposure to strong convective turbulence. Responses to turbulence were therefore distinct from responses to wind, with the costs of high turbulence being levied through an increase in the variability of their kinematics and airspeed. This highlights the value of investigating the variability in flight parameters in free-living animals.
  • Data package
    Data from: The price of being late: short- and long-term consequences of a delayed migration timing [naturally-timed birds]
    (2023-07-28) Bontekoe, Iris D.; Fiedler, Wolfgang; Wikelski, Martin; Flack, Andrea
    Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
  • Data package
    Data from: The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers
    (2016-01-12) Kays, Roland; Jansen, Patrick A.; Knecht, Elise M.H.; Vohwinkel, Reinhard; Wikelski, Martin
    Seed dispersal is critical to understanding forest dynamics but is hard to study because tracking seeds is difficult. Even for the best-studied dispersal system of the Neotropics, Virola nobilis, the dispersal kernel remains unknown. We combined high-resolution GPS/3D-acceleration bird tracking, seed-retention experiments, and field observations to quantify dispersal of V. nobilis by their principal dispersers, Ramphastos toucans. We inferred feeding events from movement data, and then estimated spatiotemporally explicit seed-dispersal kernels. Wild toucans moved an average of 1.8 km d^-1 with two distinct activity peaks. Seed retention time in captive toucans averaged 25.5 min (range 4-98 min). Estimated seed dispersal distance averaged 144 +/- 147 m, with a 56% likelihood of dispersal >100 m, two times further than the behaviour-naive estimate from the same data. Dispersal was furthest for seeds ingested in the morning, and increased with seed retention time, but only up to 60 min after feeding. Our study supports the long-standing hypothesis that toucans are excellent dispersers of Virola seeds. To maximize seed dispersal distances trees should ripen fruit in the morning when birds move the most, and produce fruits with gut-processing times around 60 min. Our study demonstrates how new tracking technology can yield nuanced seed dispersal kernels for animals that cannot be directly observed.
  • Data package
    Data from: Longer days enable higher diurnal activity for migratory birds [greater white-fronted geese]
    (2021-03-24) Kölzsch, Andrea; Müskens, Gerhard J.D.M.; Moonen, Sander; Kruckenberg, Helmut; Glazov, Peter; Wikelski, Martin
    (1) Seasonal geophysical cycles strongly influence the activity of life on Earth because they affect environmental conditions like temperature, precipitation, and daylength. An increase in daylight availability during summer is especially enhanced when animals migrate along a latitudinal gradient. Yet, the question of how daylength (i.e. daylight availability) influences the activity patterns of long‐distance, latitudinal migrants is still unclear. (2) Here, we ask whether migration provides benefits to long‐distance migrants by enabling them to increase their diurnal movement activities due to an increase in daylight availability. To answer this question, we tested whether four vastly different species of long‐distance migratory birds--two arctic migrants and two mid‐latitude migrants--can capitalise on day length changes by adjusting their daily activity. (3) We quantified the relationship between daily activity (measured using accelerometer data) and day length, and estimated each species' daily activity patterns. In addition, we evaluated the role of day length as an ultimate driver of bird migration. (4) All four species exhibited longer activity periods during days with more daylight hours, showing a strong positive relationship between total daily activity and day length. The slope of this relationship varied between the different species, with activity increasing 1.5‐fold on average when migrating from wintering to breeding grounds. Underlying mechanisms of these relationships reveal two distinct patterns of daily activity. Flying foragers showed increasing activity patterns, i.e. their daytime activities rose uniformly up to solar noon and decreased until dusk, thereby exhibiting a season‐specific activity slope. In contrast, ground foragers showed a constant activity pattern, whereby they immediately increased their activity to a certain level and maintained this level throughout the day. (5) Our study reveals that long days allow birds to prolong their activity and increase their total daily activity. These findings highlight that daylight availability could be an additional ultimate cause of bird migration and act as a selective agent for the evolution of migration.
  • Data package
    Data from: Dynamic body acceleration increases by 20% during flight ontogeny of greylag geese (Anser anser)
    (2019-11-15) Gatt, Marie Claire; Quetting, Michael; Cheng, Yachang; Wikelski, Martin
    Despite our knowledge of the biophysical and behavioural changes during flight ontogeny in juvenile birds, little is known about the changes in the mechanical aspects of energy expenditure during early flight development, particularly in migratory species. Here, we investigate in a unique experimental setup how energy expended during flights changes over time beginning with early ontogeny. We calculate overall dynamic body acceleration (ODBA) as a proxy for energy expenditure in a group of hand raised Greylag Geese (Anser anser) trained to fly behind a microlight aircraft. We propose two potential hypotheses; energy expenditure either increases with increasing physiological suitability (the ‘physical development hypothesis’), or decreases as a result of behavioural improvements mitigating flight costs (the ‘behavioural development hypothesis’). There was a significant temporal increase of flight duration and ODBA over time, supporting the ‘physical development hypothesis’. This suggests that early on in flight ontogeny behavioural development leading to flight efficiency plays a weaker role in shaping ODBA changes than the increased physical ability to expend energy in flight. We discuss these findings and the implications of flight development on the life history of migratory species.
  • Data package
    Data from: Moulting sites of Latvian whooper swan Cygnus cygnus cygnets fitted with GPS-GSM transmitters
    (2019-12-31) Boiko, Dmitrijs; Wikelski, Martin; Fiedler, Wolfgang
    Previous studies on Whooper Swan Cygnus cygnus cygnets hatched in Latvia have shown that c. 99% leave the country each year to moult elsewhere in their 2nd to 6th calendar years. To reveal the exact moulting sites, in 2016 ten cygnets were fitted with 91g solar-powered neck-collar-mounted GPS-GSM loggers. Moulting sites were recorded for four individuals in their 2nd calendar year, and for two of these birds in their 3rd calendar year; four birds in total. All of these moulted at sites in Russia; one was in the Republic of Karelia and three were in the Arkhangelsk Region. The mean average straight-line distance between the hatching and moulting sites was 1,451 km (range = 1,038–2,524 km). Although the data were less comprehensive, another tracked swan probably moulted in the western part of the White Sea in the Republic of Karelia. The conservation of these moulting sites is essential for the Latvian Whooper Swans to thrive.
  • Data package
    Data from: Study "LifeTrack White Stork SW Germany" (2013-2023)
    (2024-01-17) Fiedler, Wolfgang; Flack, Andrea; Schäfle, Wolfgang; Keeves, Brigitta; Quetting, Michael; Eid, Babette; Schmid, Heidi; Wikelski, Martin
    Human-induced changes in climate and environment are challenging the existence of migratory species. Species with diverse and flexible migratory behaviour suffer less from population decline, as they are more capable to respond by altering migratory behaviour. At the individual-level, variations in migratory behaviour may lead to differences in fitness and subsequently influence demographic dynamics. Using lifetime GPS bio-logging data from 169 white storks (Ciconia ciconia), we answer whether their recently shortened migration has survival benefit during the juvenile stage, the riskiest life period for many migrants. We also explore how other variations in migratory decisions (i.e. time, destination), movement activity (measured by the overall body dynamic acceleration), and early life conditions influence juveniles’ survival. We observed that first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risk. In addition, higher movement activity and overwintering “closer-to-home” in Europe and North Africa (84.21% of tracked individuals adopted this new strategy) were associated with higher survival. Our study shows how avian migrants can change life history decisions linked to fitness over few decades and thus helps us to understand and predict how migrants respond to the changing world.
  • Data package
    Data from: Study "LifeTrack White Stork Rheinland-Pfalz" (2015-2023)
    (2024-01-17) Fiedler, Wolfgang; Hilsendegen, Christiane; Reis, Christian; Lehmann, Jessica; Hilsendegen, Pirmin; Schmid, Heidi; Wikelski, Martin
    Human-induced changes in climate and environment are challenging the existence of migratory species. Species with diverse and flexible migratory behaviour suffer less from population decline, as they are more capable to respond by altering migratory behaviour. At the individual-level, variations in migratory behaviour may lead to differences in fitness and subsequently influence demographic dynamics. Using lifetime GPS bio-logging data from 169 white storks (Ciconia ciconia), we answer whether their recently shortened migration has survival benefit during the juvenile stage, the riskiest life period for many migrants. We also explore how other variations in migratory decisions (i.e. time, destination), movement activity (measured by the overall body dynamic acceleration), and early life conditions influence juveniles’ survival. We observed that first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risk. In addition, higher movement activity and overwintering “closer-to-home” in Europe and North Africa (84.21% of tracked individuals adopted this new strategy) were associated with higher survival. Our study shows how avian migrants can change life history decisions linked to fitness over few decades and thus helps us to understand and predict how migrants respond to the changing world.
  • Data package
    Data from: Study "LifeTrack White Stork Bavaria" (2014-2023)
    (2024-01-17) Fiedler, Wolfgang; Leppelsack, Elke; Leppelsack, Hans; Stahl, Thomas; Wieding, Oda; Wikelski, Martin
    Human-induced changes in climate and environment are challenging the existence of migratory species. Species with diverse and flexible migratory behaviour suffer less from population decline, as they are more capable to respond by altering migratory behaviour. At the individual-level, variations in migratory behaviour may lead to differences in fitness and subsequently influence demographic dynamics. Using lifetime GPS bio-logging data from 169 white storks (Ciconia ciconia), we answer whether their recently shortened migration has survival benefit during the juvenile stage, the riskiest life period for many migrants. We also explore how other variations in migratory decisions (i.e. time, destination), movement activity (measured by the overall body dynamic acceleration), and early life conditions influence juveniles’ survival. We observed that first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risk. In addition, higher movement activity and overwintering “closer-to-home” in Europe and North Africa (84.21% of tracked individuals adopted this new strategy) were associated with higher survival. Our study shows how avian migrants can change life history decisions linked to fitness over few decades and thus helps us to understand and predict how migrants respond to the changing world.
  • Data package
    Data from: Study "LifeTrack White Stork Oberschwaben" (2014-2023)
    (2024-01-16) Fiedler, Wolfgang; Flack, Andrea; Schmidt, Andreas; Reinhard, Ute; Wikelski, Martin
    Human-induced changes in climate and environment are challenging the existence of migratory species. Species with diverse and flexible migratory behaviour suffer less from population decline, as they are more capable to respond by altering migratory behaviour. At the individual-level, variations in migratory behaviour may lead to differences in fitness and subsequently influence demographic dynamics. Using lifetime GPS bio-logging data from 169 white storks (Ciconia ciconia), we answer whether their recently shortened migration has survival benefit during the juvenile stage, the riskiest life period for many migrants. We also explore how other variations in migratory decisions (i.e. time, destination), movement activity (measured by the overall body dynamic acceleration), and early life conditions influence juveniles’ survival. We observed that first autumn migration was the riskiest period for juvenile white storks. Individuals that migrated shorter distances and fledged earlier experienced lower mortality risk. In addition, higher movement activity and overwintering “closer-to-home” in Europe and North Africa (84.21% of tracked individuals adopted this new strategy) were associated with higher survival. Our study shows how avian migrants can change life history decisions linked to fitness over few decades and thus helps us to understand and predict how migrants respond to the changing world.