Sensor:
Radio Transmitter

No Thumbnail Available
Name
Radio Transmitter
External ID
radio-transmitter
Is Location Sensor
true

Search Results

Now showing 1 - 3 of 3
  • Data package
    Data from: Defensive fruit metabolites obstruct seed dispersal by altering bat behavior and physiology at multiple temporal scales
    (2019-11-25) Baldwin, Justin W.; Dechmann, Dina K.N.; Thies, Wibke; Whitehead, Susan R.
    The paradoxical presence of toxic chemical compounds in ripe fruits represents a balance between plant enemies and allies: chemical traits can defend seeds against antagonistic herbivores, seed predators or fungal pathogens, but also can impose costs by repelling mutualistic seed dispersers, although the costs are often difficult to quantify. Seeds gain fitness benefits from travelling far from the parent plant, as they can escape from parental competition and elude specialized herbivores as well as pathogens that accumulate on adult plants. However, seeds are difficult to follow from their parent plant to their final destination. Thus, little is known about the factors that determine seed dispersal distance. We investigated this potential cost of fruit secondary compounds – reduced seed dispersal distance ‐ by combining two datasets from previous work on a Neotropical bat‐plant dispersal system (bats in the genus Carollia and plants in the genus Piper). We used data from captive behavioral experiments, which show how amides in ripe fruits of Piper decrease the retention time of seeds and alter food choices. With new analyses, we show that these defensive secondary compounds also delay the time of fruit removal. Next, with a behaviorally annotated bat telemetry dataset, we quantified post‐feeding movements (i.e. seed dispersal distances). Using generalized additive mixed models we found that seed dispersal distances varied nonlinearly with gut retention times as well as with the time of fruit removal. By interrogating the model predictions, we identified two novel mechanisms by which fruit secondary compounds can impose costs in terms of decreased seed dispersal distances: 1) small scale reductions in gut retention time and 2) causing fruits to forgo advantageous bat activity peaks that confer high seed dispersal distances.
  • Data package
    Data from: Airplane tracking documents the fastest flight speeds recorded for bats
    (2016-10-31) McCracken, Gary; Safi, Kamran; Kunz, Thomas; Dechmann, Dina K.N.; Swartz, Sharon; Wikelski, Martin
    The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche. Here, we investigate flight behaviour in seven free-flying Brazilian free-tailed bats (Tadarida brasiliensis) and report that the maximum ground speeds achieved exceed speeds previously documented for any bat. Regional wind modelling indicates that bats adjusted flight speeds in response to winds by flying more slowly as wind support increased and flying faster when confronted with crosswinds, as demonstrated for insects, birds and other bats. Increased frequency of pauses in wing beats at faster speeds suggests that flap-gliding assists the bats’ rapid flight. Our results suggest that flight performance in bats has been underappreciated and that functional differences in the flight abilities of birds and bats require re-evaluation.
  • Data package
    Data from: Tracking post-hibernation behavior and early migration does not reveal the expected sex-differences in a "female-migrating“ bat
    (2015-03-23) Varga, Katarina; Dechmann, Dina K.N.; O'Mara, M. Teague; Wikelski, Martin
    Long-distance migration is a rare phenomenon in European bats. Genetic analyses and banding studies show that females can cover distances of up to 1,600 km, whereas males are sedentary or migrate only short distances. The onset of this sex-biased migration is supposed to occur shortly after rousing from hibernation and when the females are already pregnant. We therefore predicted that the sexes are exposed to different energetic pressures in early spring, and this should be reflected in their behavior and physiology. We investigated this in one of the three Central European long-distance migrants, the common noctule (Nyctalus noctula) in Southern Germany recording the first individual partial migration tracks of this species. In contrast to our predictions, we found no difference between male and female home range size, activity, habitat use or diet. Males and females emerged from hibernation in similar body condition and mass increase rate was the same in males and females. We followed the first migration steps, up to 475 km, of radio-tagged individuals from an airplane. All females, as well as some of the males, migrated away from the wintering area in the same northeasterly direction. Sex differences in long-distance migratory behavior were confirmed through stable isotope analysis of hair, which showed greater variation in females than in males. We hypothesize that both sexes faced similarly good conditions after hibernation and fattened at maximum rates, thus showing no differences in their local behavior. Interesting results that warrant further investigation are the better initial condition of the females and the highly consistent direction of the first migratory step in this population as summering habitats of the common noctule occur at a broad range in Northern Europe. Only research focused on individual strategies will allow us to fully understand the migratory behavior of European bats.