Person:
Kays, Roland

Loading...
Profile Picture
Email Address
Affiliation
ORCID
Birth Date
Job Title
Last Name
Kays
First Name
Roland
Creator of
Editor of
Reviewer of
Copyright Holder of
Data Contributor of
Funder of
Translator of
Other Contributor of

Search Results

Now showing 1 - 2 of 2
  • Data package
    Data from: The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers
    (2016-01-12) Kays, Roland; Jansen, Patrick A.; Knecht, Elise M.H.; Vohwinkel, Reinhard; Wikelski, Martin
    Seed dispersal is critical to understanding forest dynamics but is hard to study because tracking seeds is difficult. Even for the best-studied dispersal system of the Neotropics, Virola nobilis, the dispersal kernel remains unknown. We combined high-resolution GPS/3D-acceleration bird tracking, seed-retention experiments, and field observations to quantify dispersal of V. nobilis by their principal dispersers, Ramphastos toucans. We inferred feeding events from movement data, and then estimated spatiotemporally explicit seed-dispersal kernels. Wild toucans moved an average of 1.8 km d^-1 with two distinct activity peaks. Seed retention time in captive toucans averaged 25.5 min (range 4-98 min). Estimated seed dispersal distance averaged 144 +/- 147 m, with a 56% likelihood of dispersal >100 m, two times further than the behaviour-naive estimate from the same data. Dispersal was furthest for seeds ingested in the morning, and increased with seed retention time, but only up to 60 min after feeding. Our study supports the long-standing hypothesis that toucans are excellent dispersers of Virola seeds. To maximize seed dispersal distances trees should ripen fruit in the morning when birds move the most, and produce fruits with gut-processing times around 60 min. Our study demonstrates how new tracking technology can yield nuanced seed dispersal kernels for animals that cannot be directly observed.
  • Data package
    Data from: Stink or swim: techniques to meet the challenges for the study and conservation of small critters that hide, swim or climb and may otherwise make themselves unpleasant.
    (2015-05-25) Kays, Roland; Hirsch, Ben T.
    The study of musteloids requires different perspectives and techniques than those needed for most mammals. Musteloids are generally small yet travel long distances and many live or forage underground or under water, limiting the use of telemetry and direct observation. Some are arboreal and nocturnal, facilitating telemetry but limiting observation, trapping, and many non-invasive techniques. Large sexual size dimorphism arguably doubles sample sizes for many research questions. Many musteloids defend themselves by expelling noxious chemicals. This obscure group does not attract funding, even when endangered, further reducing rate of knowledge gain. Nonetheless, passive and active radio frequency identification tags, magnetic-inductance tracking, accelerometers, mini-biologgers and some GPS tags are tiny enough for use with small musteloids. Environmental DNA can document presence of animals rarely seen. These technologies, coupled with creative research design that is well-grounded on the scientific method, form a multi-dimensional approach for advancing our understanding of these charismatic minifauna.