Browsing by Author "Mu, Tong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Data packageData from: Migratory routes of red-necked phalaropes Phalaropus lobatus breeding in southern Chukotka revealed by geolocators(2018-06-13) Mu, Tong; Tomkovich, Pavel S.; Loktionov, Egor Y.; Syroechkovskiy, Evgeny E.; Wilcove, David S.The migration routes of Red‐necked Phalaropes breeding around the Bering Sea are poorly known, despite the fact that the Bering Sea could mark the boundary between the East Palearctic populations that winter in the Pacific Ocean around the East Indies and the West Nearctic populations that winter in the Pacific Ocean off the coast of South America. Geolocator data retrieved from two male phalaropes tagged in southern Chukotka, Far Eastern Russia, confirm that birds breeding in this region belong to the East Palearctic population and winter in the East Indies, suggesting that the division line with the West Nearctic population is farther to the East. The routes taken by the two phalaropes were almost entirely pelagic, totaling around 18,000–20,000 km round‐trip, with the birds continuously on the move during migration, rather than resident in any particular stopover site, contrary to most other migratory shorebirds.
- Data packageData from: Tracking the migration of red-necked stint (Calidris ruficollis) reveals marathon flights and unexpected conservation challenges(2020-10-09) Mu, Tong; Tomkovich, Pavel S.; Loktionov, Egor Y.; Syroechkovskiy, Evgeny E.; Wilcove, David S.Effective conservation of migratory species depends on understanding both migratory connectivity and migration strategy. The Red‐necked Stint Calidris ruficollis is a small, highly migratory sandpiper of the East Asian‐Australasian Flyway, which is classified as Near Threatened due to ongoing population declines. We tracked the migration of three Red‐necked Stints breeding in southern Chukotka, Russia, using geolocators, and supplemented our tracking data with re‐sighting records of color‐flagged individuals. The three birds, all of which bred within 2km of each other, wintered in three different localities spanning nearly 5,000km. One individual completed its northward migration of >9400 km in two marathon flights; the second leg of that journey was completed in a nonstop flight of 5,350 km. The successful conservation of just this one population requires protection of wintering sites across a vast area, coupled with key staging sites along the flyway. We suggest that other migratory species may pose similar conservation challenges.