Browsing by Author "Cheng, Yachang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Data packageData from: Diverse foraging strategies of breeding Swinhoe's Storm-Petrel in the productive marginal sea of Northwest Pacific(2024-01-04) Cheng, Yachang; Zhu, Lei; Xue, Lin; Ma, Shisheng; Jia, Nan; Zang, Shaoping; Cao, Zhihai; Yuan, Jing; Liu, YangUnderstanding the foraging behavior is essential for investigating seabird ecology and conservation, as well as monitoring the well-being of the marine environment. Breeding seabirds adopt diverse foraging strategies to maximize energy gains and cope with the intensified challenges of parenting and self-maintenance. Such trade-off may stem from the heterogeneity of food resources and the constraints of central place foraging. Nevertheless, abundant marine productivity could alleviate the energy limitation for seabirds, resulting in a consistent foraging approach. Here, we investigated the foraging strategy during the breeding season of a cryptic small-sized seabird, Swinhoe's Storm-petrel (Hydrobates monorhis), in the Yellow Sea, a productive marginal sea of the Northwest Pacific. Using GPS tracking, we evaluated habitat preference, quantified the foraging strategy, and tested if environmental conditions and individual traits influence foraging trips. We found that Swinhoe's Storm-petrels preferred nearshore areas with shallow water and engaged in primarily short foraging trips. Distinctive southeastward and southwestward strategies emerged when combining trip metrics, including foraging direction, duration, and maximum distance. The bathymetry, proximity to the coastline, and sea surface temperature differed in two foraging strategies. Foraging strategies exhibited flexibility between individuals, potentially explained by wing morphology, in which longer-winged birds are more likely to embark on longer-distance foraging trips. These findings highlight the impact of environmental factors and individual traits on seabirds' foraging decisions in productive marginal sea ecosystems. Our study also provides valuable insights into the foraging ecology of this Asian endemic Storm-petrels.
- Data packageData from: Dynamic body acceleration increases by 20% during flight ontogeny of greylag geese (Anser anser)(2019-11-15) Gatt, Marie Claire; Quetting, Michael; Cheng, Yachang; Wikelski, MartinDespite our knowledge of the biophysical and behavioural changes during flight ontogeny in juvenile birds, little is known about the changes in the mechanical aspects of energy expenditure during early flight development, particularly in migratory species. Here, we investigate in a unique experimental setup how energy expended during flights changes over time beginning with early ontogeny. We calculate overall dynamic body acceleration (ODBA) as a proxy for energy expenditure in a group of hand raised Greylag Geese (Anser anser) trained to fly behind a microlight aircraft. We propose two potential hypotheses; energy expenditure either increases with increasing physiological suitability (the ‘physical development hypothesis’), or decreases as a result of behavioural improvements mitigating flight costs (the ‘behavioural development hypothesis’). There was a significant temporal increase of flight duration and ODBA over time, supporting the ‘physical development hypothesis’. This suggests that early on in flight ontogeny behavioural development leading to flight efficiency plays a weaker role in shaping ODBA changes than the increased physical ability to expend energy in flight. We discuss these findings and the implications of flight development on the life history of migratory species.