Taxon:Ciconia ciconia
Ciconia ciconia
No Thumbnail Available
Scientific Name
Ciconia ciconia
Common Name
White Stork
Taxa Group
Ciconiidae
Environment
Move Mode
11 results
Search Results
Now showing 1 - 10 of 11
- Data packageData from: The price of being late: short- and long-term consequences of a delayed migration timing [delayed birds](2023-07-28) Bontekoe, Iris D.; Hilgartner, Roland; Altheimer, Sylvia; Flack, AndreaChoosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
- Data packageData from: The price of being late: short- and long-term consequences of a delayed migration timing [control birds](2023-07-28) Bontekoe, Iris D.; Flack, Andrea; Fiedler, WolfgangChoosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
- Data packageData from: Timing is critical: consequences of asynchronous migration for the performance and destination of a long-distance migrant(2023-07-25) Acácio, Marta; Catry, Inês; Soriano-Redondo, Andrea; Silva, João Paulo; Atkinson, Philip W.; Franco, Aldina M.A.Background: Migration phenology is shifting for many long-distance migrants due to global climate change, however the timing and duration of migration may influence the environmental conditions individuals encounter, with potential fitness consequences. Species with asynchronous migrations, i.e., with variability in migration timing, provide an excellent opportunity to investigate how of the conditions individuals experience during migration can vary and affect the migratory performance, route, and destination of migrants. Methods: Here, we use GPS tracking and accelerometer data to examine if timing of autumn migration influences the migratory performance (duration, distance, route straightness, energy expenditure) and migration destinations of a long-distance, asynchronous, migrant, the white stork (Ciconia ciconia). We also compare the weather conditions (wind speed, wind direction, and boundary layer height) encountered on migration and examine the influence of wind direction on storks’ flight directions. Results: From 2016 to 2020, we tracked 172 white storks and obtained 75 complete migrations from the breeding grounds in Europe to the sub-Saharan wintering areas. Autumn migration season spanned over a 3-month period (July–October) and arrival destinations covered a broad area of the Sahel, 2450 km apart, from Senegal to Niger. We found that timing of migration influenced both the performance and conditions individuals experienced: later storks spent fewer days on migration, adopted shorter and more direct routes in the Sahara Desert and consumed more energy when flying, as they were exposed to less supportive weather conditions. In the Desert, storks’ flight directions were significantly influenced by wind direction, with later individuals facing stronger easterly winds (i.e., winds blowing to the west), hence being more likely to end their migration in western areas of the Sahel region. Contrastingly, early storks encountered more supportive weather conditions, spent less energy on migration and were exposed to westerly winds, thus being more likely to end migration in eastern Sahel. Conclusions: Our results show that the timing of migration influences the environmental conditions individuals face, the energetic costs of migration, and the wintering destinations, where birds may be exposed to different environmental conditions and distinct threats. These findings highlight that on-going changes in migration phenology, due to environmental change, may have critical fitness consequences for long-distance soaring migrants.
- Data packageData from: Fitness, behavioral, and energetic trade-offs of different migratory strategies in a partially migratory species(2023-08-03) Soriano-Redondo, Andrea; Franco, Aldina M.A.; Acácio, Marta; Payo-Payo, Ana; Martins, Bruno Herlander; Moreira, Francisco; Catry, InêsAlternative migratory strategies can coexist within animal populations and species. Anthropogenic impacts can shift the fitness balance between these strategies leading to changes in migratory behaviors. Yet some of the mechanisms that drive such changes remain poorly understood. Here we investigate the phenotypic differences, and the energetic, behavioral, and fitness trade-offs associated with four different movement strategies (long- and short-distance migration, and regional and local residency) in a population of white storks (Ciconia ciconia) that has shifted its migratory behavior over the last decades, from fully long-distance migration towards year-round residency. To do this, we tracked 75 adult storks fitted with GPS/GSM loggers with triaxial acceleration sensors over 5 years, and estimated individual displacement, behavior, and overall dynamic body acceleration, a proxy for activity-related energy expenditure. Additionally, we monitored nesting colonies to assess individual survival and breeding success. We found that long-distance migrants travelled thousands of kilometers more throughout the year, spent more energy, and >10% less time resting compared to short-distance migrants and residents. Long-distance migrants also spent on average more energy per unit of time while foraging, and less energy per unit of time while soaring. Migratory individuals also occupied their nests later than resident ones, later occupation led to later laying date and reduced number of fledglings. However, we did not find significant differences in survival probability. Finally, we found phenotypic differences in the migratory probability, as smaller-sized individuals were more likely to migrate, and they might be incurring in higher energetic and fitness costs than larger ones. Our results shed light into the shifting migratory strategies in a partially migratory population and highlight the nuances of anthropogenic impacts on species behavior, fitness, and evolutionary dynamics.
- Data packageData from: Wind estimation based on thermal soaring of birds(2017-11-30) Flack, Andrea; Fiedler, Wolfgang; Wikelski, MartinNOTE: An updated and larger version of this dataset is available. See doi:10.5441/001/1.ck04mn78. ABSTRACT: The flight performance of birds is strongly affected by the dynamic state of the atmosphere at the birds' locations. Studies of flight and its impact on the movement ecology of birds must consider the wind to help us understand aerodynamics and bird flight strategies. Here, we introduce a systematic approach to evaluate wind speed and direction from the high-frequency GPS recordings from bird-borne tags during thermalling flight. Our method assumes that a fixed horizontal mean wind speed during a short (18 seconds, 19 GPS fixes) flight segment with a constant turn angle along a closed loop, characteristic of thermalling flight, will generate a fixed drift for each consequent location. We use a maximum-likelihood approach to estimate that drift and to determine the wind and airspeeds at the birds' flight locations. We also provide error estimates for these GPS-derived wind speed estimates. We validate our approach by comparing its wind estimates with the mid-resolution weather reanalysis data from ECMWF, and by examining independent wind estimates from pairs of birds in a large dataset of GPS-tagged migrating storks that were flying in close proximity. Our approach provides accurate and unbiased observations of wind speed and additional detailed information on vertical winds and uplift structure. These precise measurements are otherwise rare and hard to obtain and will broaden our understanding of atmospheric conditions, flight aerodynamics, and bird flight strategies. With an increasing number of GPS-tracked animals, we may soon be able to use birds to inform us about the atmosphere they are flying through and thus improve future ecological and environmental studies.
- Data packageData from: The price of being late: short- and long-term consequences of a delayed migration timing [naturally-timed birds](2023-07-28) Bontekoe, Iris D.; Fiedler, Wolfgang; Wikelski, Martin; Flack, AndreaChoosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
- Data packageData from: Study "LifeTrack White Stork SW Germany" (2013-2023)(2024-01-17) Fiedler, Wolfgang; Flack, Andrea; Schäfle, Wolfgang; Keeves, Brigitta; Quetting, Michael; Eid, Babette; Schmid, Heidi; Wikelski, MartinHow animals refine migratory behavior over their lifetime (i.e., the ontogeny of migration) is an enduring question with important implications for predicting the adaptive capacity of migrants in a changing world. Yet, our inability to monitor the movements of individuals from early life onward has limited our understanding of the ontogeny of migration. The exploration–refinement hypothesis posits that learning shapes the ontogeny of migration in long-lived species, resulting in greater exploratory behavior early in life followed by more rapid and direct movement during later life. We test the exploration–refinement hypothesis by examining how white storks (Ciconia ciconia) balance energy, time, and information as they develop and refine migratory behavior during the first years of life. Here, we show that young birds reduce energy expenditure during flight while also increasing information gain by exploring new places during migration. As the birds age and gain more experience, older individuals stop exploring new places and instead move more quickly and directly, resulting in greater energy expenditure during migratory flight. During spring migration, individuals innovated novel shortcuts during the transition from early life into adulthood, suggesting a reliance on spatial memory acquired through learning. These incremental refinements in migratory behavior provide support for the importance of individual learning within a lifetime in the ontogeny of long-distance migration.
- Data packageData from: Study "LifeTrack White Stork Rheinland-Pfalz" (2015-2023)(2024-01-17) Fiedler, Wolfgang; Hilsendegen, Christiane; Reis, Christian; Lehmann, Jessica; Hilsendegen, Pirmin; Schmid, Heidi; Wikelski, MartinHow animals refine migratory behavior over their lifetime (i.e., the ontogeny of migration) is an enduring question with important implications for predicting the adaptive capacity of migrants in a changing world. Yet, our inability to monitor the movements of individuals from early life onward has limited our understanding of the ontogeny of migration. The exploration–refinement hypothesis posits that learning shapes the ontogeny of migration in long-lived species, resulting in greater exploratory behavior early in life followed by more rapid and direct movement during later life. We test the exploration–refinement hypothesis by examining how white storks (Ciconia ciconia) balance energy, time, and information as they develop and refine migratory behavior during the first years of life. Here, we show that young birds reduce energy expenditure during flight while also increasing information gain by exploring new places during migration. As the birds age and gain more experience, older individuals stop exploring new places and instead move more quickly and directly, resulting in greater energy expenditure during migratory flight. During spring migration, individuals innovated novel shortcuts during the transition from early life into adulthood, suggesting a reliance on spatial memory acquired through learning. These incremental refinements in migratory behavior provide support for the importance of individual learning within a lifetime in the ontogeny of long-distance migration.
- Data packageData from: Study "LifeTrack White Stork Bavaria" (2014-2023)(2024-01-17) Fiedler, Wolfgang; Leppelsack, Elke; Leppelsack, Hans; Stahl, Thomas; Wieding, Oda; Wikelski, MartinHow animals refine migratory behavior over their lifetime (i.e., the ontogeny of migration) is an enduring question with important implications for predicting the adaptive capacity of migrants in a changing world. Yet, our inability to monitor the movements of individuals from early life onward has limited our understanding of the ontogeny of migration. The exploration–refinement hypothesis posits that learning shapes the ontogeny of migration in long-lived species, resulting in greater exploratory behavior early in life followed by more rapid and direct movement during later life. We test the exploration–refinement hypothesis by examining how white storks (Ciconia ciconia) balance energy, time, and information as they develop and refine migratory behavior during the first years of life. Here, we show that young birds reduce energy expenditure during flight while also increasing information gain by exploring new places during migration. As the birds age and gain more experience, older individuals stop exploring new places and instead move more quickly and directly, resulting in greater energy expenditure during migratory flight. During spring migration, individuals innovated novel shortcuts during the transition from early life into adulthood, suggesting a reliance on spatial memory acquired through learning. These incremental refinements in migratory behavior provide support for the importance of individual learning within a lifetime in the ontogeny of long-distance migration.
- Data packageData from: Study "LifeTrack White Stork Oberschwaben" (2014-2023)(2024-01-16) Fiedler, Wolfgang; Flack, Andrea; Schmid, Andreas; Reinhard, Ute; Wikelski, MartinHow animals refine migratory behavior over their lifetime (i.e., the ontogeny of migration) is an enduring question with important implications for predicting the adaptive capacity of migrants in a changing world. Yet, our inability to monitor the movements of individuals from early life onward has limited our understanding of the ontogeny of migration. The exploration–refinement hypothesis posits that learning shapes the ontogeny of migration in long-lived species, resulting in greater exploratory behavior early in life followed by more rapid and direct movement during later life. We test the exploration–refinement hypothesis by examining how white storks (Ciconia ciconia) balance energy, time, and information as they develop and refine migratory behavior during the first years of life. Here, we show that young birds reduce energy expenditure during flight while also increasing information gain by exploring new places during migration. As the birds age and gain more experience, older individuals stop exploring new places and instead move more quickly and directly, resulting in greater energy expenditure during migratory flight. During spring migration, individuals innovated novel shortcuts during the transition from early life into adulthood, suggesting a reliance on spatial memory acquired through learning. These incremental refinements in migratory behavior provide support for the importance of individual learning within a lifetime in the ontogeny of long-distance migration.