Taxon:
Ciconia ciconia

No Thumbnail Available
Scientific Name
Ciconia ciconia
Common Name
White Stork
Taxa Group
Ciconiidae
Environment
Move Mode

Search Results

Now showing 1 - 9 of 9
  • Data package
    Data from: The price of being late: short- and long-term consequences of a delayed migration timing [naturally-timed birds]
    (2023-07-28) Bontekoe, Iris D.; Fiedler, Wolfgang; Wikelski, Martin; Flack, Andrea
    Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
  • Data package
    Data from: Fitness, behavioral, and energetic trade-offs of different migratory strategies in a partially migratory species
    (2023-08-03) Soriano-Redondo, Andrea; Franco, Aldina M.A.; Acácio, Marta; Payo-Payo, Ana; Martins, Bruno Herlander; Moreira, Francisco; Catry, Inês
    Alternative migratory strategies can coexist within animal populations and species. Anthropogenic impacts can shift the fitness balance between these strategies leading to changes in migratory behaviors. Yet some of the mechanisms that drive such changes remain poorly understood. Here we investigate the phenotypic differences, and the energetic, behavioral, and fitness trade-offs associated with four different movement strategies (long- and short-distance migration, and regional and local residency) in a population of white storks (Ciconia ciconia) that has shifted its migratory behavior over the last decades, from fully long-distance migration towards year-round residency. To do this, we tracked 75 adult storks fitted with GPS/GSM loggers with triaxial acceleration sensors over 5 years, and estimated individual displacement, behavior, and overall dynamic body acceleration, a proxy for activity-related energy expenditure. Additionally, we monitored nesting colonies to assess individual survival and breeding success. We found that long-distance migrants travelled thousands of kilometers more throughout the year, spent more energy, and >10% less time resting compared to short-distance migrants and residents. Long-distance migrants also spent on average more energy per unit of time while foraging, and less energy per unit of time while soaring. Migratory individuals also occupied their nests later than resident ones, later occupation led to later laying date and reduced number of fledglings. However, we did not find significant differences in survival probability. Finally, we found phenotypic differences in the migratory probability, as smaller-sized individuals were more likely to migrate, and they might be incurring in higher energetic and fitness costs than larger ones. Our results shed light into the shifting migratory strategies in a partially migratory population and highlight the nuances of anthropogenic impacts on species behavior, fitness, and evolutionary dynamics.
  • Data package
    Data from: Study "MPIAB Argos white stork tracking (1991-2017)"
    (2022-12-26) Berthold, Peter; Kaatz, Christoph; Kaatz, Michael; Querner, Ulrich; van den Bossche, Willem; Chernetsov, Nikita; Fiedler, Wolfgang; Wikelski, Martin
    Satellite tracking of white storks (Ciconia ciconia) was begun by the Max Planck Institute of Ornithology and collaborators in 1991. After solar-powered transmitters became available in 1995, extended battery life combined with the possibility to replace transmitters over time allowed monitoring the movements of individual storks across multiple migration seasons, with one individual, Prinzesschen, tracked for over a decade. Research efforts continue using primarily GSM-based tracking technologies. This dataset includes over 200 storks tagged in Belgium, Germany, Greece, Israel, Poland, Russia, South Africa, Spain and Switzerland. As noted in the deployment information, some movements are influenced by experimental manipulations. This long-term study confirms what previous several-year tracking studies of white storks had indicated: there can be great variability from year to year in the choice of winter quarters as well as in the routes and times of migration, intermediate destinations and stop-over periods, but constancy of winter quarters and migration routes is also possible. The variability may well be caused by external factors, of which food supply is probably predominant.
  • Data package
    Data from: The price of being late: short- and long-term consequences of a delayed migration timing [delayed birds]
    (2023-07-28) Bontekoe, Iris D.; Hilgartner, Roland; Altheimer, Sylvia; Flack, Andrea
    Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
  • Data package
    Data from: The price of being late: short- and long-term consequences of a delayed migration timing [control birds]
    (2023-07-28) Bontekoe, Iris D.; Flack, Andrea; Fiedler, Wolfgang
    Choosing the right migration timing is critical for migrants because conditions encountered en route influence movement costs, survival, and, in social migrants, the availability of social information. Depending on lifetime stages, individuals may migrate at different times due to diverging constraints, affecting the composition of migration groups. To examine the consequences of a delayed migration timing, we artificially delayed the migration of juvenile white storks (Ciconia ciconia) and thereby altered their physical and social environment. Using nearly continuous 1 Hz GPS trajectories, we examined their migration behaviour, ranging from sub-second level performance to global long-distance movement, in relation to two control groups. We found that delayed storks experienced suboptimal soaring conditions, but better wind support and thereby achieved higher flight speeds than control storks. Delayed storks had a lower mortality rate than the control storks and wintered closer to the breeding area. In fact, none of the delayed storks reached the traditional African wintering areas. Thus, our results show that juvenile storks can survive migrating at the ‘wrong’ time. However, this had long-term consequences on migration decisions. We suggest that, when timing their migration, storks balance not just energy and time, but also the availability of social information.
  • Data package
    Data from: Timing is critical: consequences of asynchronous migration for the performance and destination of a long-distance migrant
    (2023-07-25) Acácio, Marta; Catry, Inês; Soriano-Redondo, Andrea; Silva, João Paulo; Atkinson, Philip W.; Franco, Aldina M.A.
    Background: Migration phenology is shifting for many long-distance migrants due to global climate change, however the timing and duration of migration may influence the environmental conditions individuals encounter, with potential fitness consequences. Species with asynchronous migrations, i.e., with variability in migration timing, provide an excellent opportunity to investigate how of the conditions individuals experience during migration can vary and affect the migratory performance, route, and destination of migrants. Methods: Here, we use GPS tracking and accelerometer data to examine if timing of autumn migration influences the migratory performance (duration, distance, route straightness, energy expenditure) and migration destinations of a long-distance, asynchronous, migrant, the white stork (Ciconia ciconia). We also compare the weather conditions (wind speed, wind direction, and boundary layer height) encountered on migration and examine the influence of wind direction on storks’ flight directions. Results: From 2016 to 2020, we tracked 172 white storks and obtained 75 complete migrations from the breeding grounds in Europe to the sub-Saharan wintering areas. Autumn migration season spanned over a 3-month period (July–October) and arrival destinations covered a broad area of the Sahel, 2450 km apart, from Senegal to Niger. We found that timing of migration influenced both the performance and conditions individuals experienced: later storks spent fewer days on migration, adopted shorter and more direct routes in the Sahara Desert and consumed more energy when flying, as they were exposed to less supportive weather conditions. In the Desert, storks’ flight directions were significantly influenced by wind direction, with later individuals facing stronger easterly winds (i.e., winds blowing to the west), hence being more likely to end their migration in western areas of the Sahel region. Contrastingly, early storks encountered more supportive weather conditions, spent less energy on migration and were exposed to westerly winds, thus being more likely to end migration in eastern Sahel. Conclusions: Our results show that the timing of migration influences the environmental conditions individuals face, the energetic costs of migration, and the wintering destinations, where birds may be exposed to different environmental conditions and distinct threats. These findings highlight that on-going changes in migration phenology, due to environmental change, may have critical fitness consequences for long-distance soaring migrants.
  • Data package
    Data from: Individual environmental niches in mobile organisms
    (2021-02-19) Carlson, Ben; Rotics, Shay; Nathan, Ran; Wikelski, Martin; Jetz, Walter
    Individual variation is increasingly recognized as a central component of ecological processes, but its role in structuring environmental niche associations remains largely unknown. Species’ responses to environmental conditions are ultimately determined by the niches of single individuals, yet environmental associations are typically captured only at the level of species. Here, we develop scenarios for how individual variation may combine to define the compound environmental niche of populations, use extensive movement data to document individual environmental niche variation, test associated hypotheses of niche configuration, and examine the consistency of individual niches over time. For 45 individual white storks (Ciconia ciconia; 116 individual-year combinations), we uncover high variability in individual environmental associations, consistency of individual niches over time, and moderate to strong niche specialization. Within populations, environmental niches follow a nested pattern, with individuals arranged along a specialist-to-generalist gradient. These results reject common assumptions of individual niche equivalency among conspecifics, as well as the separation of individual niches into disparate parts of environmental space. These findings underscore the need for a more thorough consideration of individualistic environmental responses in global change research.
  • Data package
    Data from: Study "LifeTrack White Stork Sicily"
    (2021-12-10) Grasso, Rosario; Gagliardo, Anna; Zafarana, Manuel; Mueller, Inge; Schmid, Heidi; Fiedler, Wolfgang; Wikelski, Martin
    1. Quantifying movement and demographic events of free-ranging animals is fundamental to studying their ecology, evolution and conservation. Technological advances have led to an explosion in sensor-based methods for remotely observing these phenomena. This transition to big data creates new challenges for data management, analysis and collaboration. 2. We present the Movebank ecosystem of tools used by thousands of researchers to collect, manage, share, visualize, analyse and archive their animal tracking and other animal-borne sensor data. Users add sensor data through file uploads or live data streams and further organize and complete quality control within the Movebank system. All data are harmonized to a data model and vocabulary. The public can discover, view and download data for which they have been given access to through the website, the Animal Tracker mobile app or by API. Advanced analysis tools are available through the EnvDATA System, the MoveApps platform and a variety of user-developed applications. Data owners can share studies with select users or the public, with options for embargos, licenses and formal archiving in a data repository. 3. Movebank is used by over 3,100 data owners globally, who manage over 6 billion animal location and sensor measurements across more than 6,500 studies, with thousands of active tags sending over 3 million new data records daily. These data underlie >700 published papers and reports. We present a case study demonstrating the use of Movebank to assess life-history events and demography, and engage with citizen scientists to identify mortalities and causes of death for a migratory bird. 4. A growing number of researchers, government agencies and conservation organizations use Movebank to manage research and conservation projects and to meet legislative requirements. The combination of historic and new data with collaboration tools enables broad comparative analyses and data acquisition and mapping efforts. Movebank offers an integrated system for real-time monitoring of animals at a global scale and represents a digital museum of animal movement and behaviour. Resources and coordination across countries and organizations are needed to ensure that these data, including those that cannot be made public, remain accessible to future generations.
  • Data package
    Data from: Study "LifeTrack White Stork Kosova"
    (2021-12-10) Maxhuni, Qenan; Gashi, Agim; Hoxha, Liridon; Wolf, Gregor; Fiedler, Wolfgang
    1. Quantifying movement and demographic events of free-ranging animals is fundamental to studying their ecology, evolution and conservation. Technological advances have led to an explosion in sensor-based methods for remotely observing these phenomena. This transition to big data creates new challenges for data management, analysis and collaboration. 2. We present the Movebank ecosystem of tools used by thousands of researchers to collect, manage, share, visualize, analyse and archive their animal tracking and other animal-borne sensor data. Users add sensor data through file uploads or live data streams and further organize and complete quality control within the Movebank system. All data are harmonized to a data model and vocabulary. The public can discover, view and download data for which they have been given access to through the website, the Animal Tracker mobile app or by API. Advanced analysis tools are available through the EnvDATA System, the MoveApps platform and a variety of user-developed applications. Data owners can share studies with select users or the public, with options for embargos, licenses and formal archiving in a data repository. 3. Movebank is used by over 3,100 data owners globally, who manage over 6 billion animal location and sensor measurements across more than 6,500 studies, with thousands of active tags sending over 3 million new data records daily. These data underlie >700 published papers and reports. We present a case study demonstrating the use of Movebank to assess life-history events and demography, and engage with citizen scientists to identify mortalities and causes of death for a migratory bird. 4. A growing number of researchers, government agencies and conservation organizations use Movebank to manage research and conservation projects and to meet legislative requirements. The combination of historic and new data with collaboration tools enables broad comparative analyses and data acquisition and mapping efforts. Movebank offers an integrated system for real-time monitoring of animals at a global scale and represents a digital museum of animal movement and behaviour. Resources and coordination across countries and organizations are needed to ensure that these data, including those that cannot be made public, remain accessible to future generations.