Taxon:
Physeter macrocephalus

No Thumbnail Available
Scientific Name
Physeter macrocephalus
Common Name
Sperm Whale
cachalot
Taxa Group
Physeteridae
Environment
Move Mode

Search Results

Now showing 1 - 3 of 3
  • Data package
    Data from: Study "Sperm whales Gulf of Mexico 2011-2013 - FastLoc GPS data"
    (2020-06-18) Irvine, Ladd M.; Follett, Tomas M.; Winsor, Martha H.; Mate, Bruce R.; Palacios, Daniel M.
    Background: Argos satellite telemetry is used globally to track terrestrial and aquatic megafauna, yet the accuracy of this system has been described empirically only for a limited number of species. We used Argos-linked archival tags with Fastloc GPS deployed on free-ranging sperm (Physeter macrocephalus), blue (Balaenoptera musculus), and fin (B. physalus) whales to derive empirical estimates of Argos location errors for these species, examine possible behavior-related differences, and test the effect of incorporating species-specific error parameters on performance of a commonly used movement model. Results: Argos location errors for blue and fin whale tags were similar and were combined (n = 1712 locations) for comparison against sperm whale tags (n = 1206 locations). Location error magnitudes for tags attached to sperm whales were significantly larger than blue/fin whale tags for almost all Argos location classes (LC), ranging from 964 m versus 647 m for LC 3, respectively, to 10,569 m versus 5589 m for LC B, respectively. However, these differences were not seen while tags floated at the surface after release. Sperm whale tags were significantly colder than ambient temperature when surfacing from a dive, compared to blue/fin whale tags (16.9 °C versus 1.3 °C, respectively) leading to larger changes in tag temperature during post-dive intervals. The increased rate of tag temperature change while at the surface was correlated to increased error magnitude for sperm whales but not blue/fin whales. Movement model performance was not significantly improved by incorporating species-specific error parameters. Conclusions: Location accuracy estimates for blue/fin whales were within the range estimated for other marine megafauna, but were higher for sperm whales. Thermal inertia from deep, long-duration dives likely caused transmission frequency drift and greater Argos location error in sperm whales, as tags warmed at the surface during post-dive intervals. Thus, tracks of deep-diving species may be less accurate than for other species. However, differences in calculated error magnitude between species were less than typical scales of movement and had limited effect on movement model performance. Therefore, broad-scale interpretation of Argos tracking data will likely be unaffected, although fine-scale interpretation should be made with more caution for deep-diving species inhabiting warm regions.
  • Data package
    Data from: Study "Sperm whales Gulf of Mexico 2011-2013 - Argos data"
    (2020-06-16) Irvine, Ladd M.; Follett, Tomas M.; Winsor, Martha H.; Mate, Bruce R.; Palacios, Daniel M.
    Background: Argos satellite telemetry is used globally to track terrestrial and aquatic megafauna, yet the accuracy of this system has been described empirically only for a limited number of species. We used Argos-linked archival tags with Fastloc GPS deployed on free-ranging sperm (Physeter macrocephalus), blue (Balaenoptera musculus), and fin (B. physalus) whales to derive empirical estimates of Argos location errors for these species, examine possible behavior-related differences, and test the effect of incorporating species-specific error parameters on performance of a commonly used movement model. Results: Argos location errors for blue and fin whale tags were similar and were combined (n = 1712 locations) for comparison against sperm whale tags (n = 1206 locations). Location error magnitudes for tags attached to sperm whales were significantly larger than blue/fin whale tags for almost all Argos location classes (LC), ranging from 964 m versus 647 m for LC 3, respectively, to 10,569 m versus 5589 m for LC B, respectively. However, these differences were not seen while tags floated at the surface after release. Sperm whale tags were significantly colder than ambient temperature when surfacing from a dive, compared to blue/fin whale tags (16.9 °C versus 1.3 °C, respectively) leading to larger changes in tag temperature during post-dive intervals. The increased rate of tag temperature change while at the surface was correlated to increased error magnitude for sperm whales but not blue/fin whales. Movement model performance was not significantly improved by incorporating species-specific error parameters. Conclusions: Location accuracy estimates for blue/fin whales were within the range estimated for other marine megafauna, but were higher for sperm whales. Thermal inertia from deep, long-duration dives likely caused transmission frequency drift and greater Argos location error in sperm whales, as tags warmed at the surface during post-dive intervals. Thus, tracks of deep-diving species may be less accurate than for other species. However, differences in calculated error magnitude between species were less than typical scales of movement and had limited effect on movement model performance. Therefore, broad-scale interpretation of Argos tracking data will likely be unaffected, although fine-scale interpretation should be made with more caution for deep-diving species inhabiting warm regions.
  • Data package
    Data from: Sperm whale dive behavior characteristics derived from intermediate-duration archival tag data
    (2019-08-09) Irvine, Ladd M.; Mate, Bruce R.; Palacios, Daniel M.; Follett, Tomas M.
    Here, we describe the diving behavior of sperm whales (Physeter macrocephalus) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1‐Hz resolution and GPS‐quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS‐quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V‐shaped, Mid‐water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short‐ and Long‐duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.