Taxon:
Columba livia

No Thumbnail Available
Scientific Name
Columba livia
Common Name
Common Pigeon
Rock Dove
Rock Pigeon
Taxa Group
Columbidae
Environment
Move Mode

Search Results

Now showing 1 - 10 of 10
  • Data package
    Data from: Deconstructing the flight paths of hippocampal-lesioned homing pigeons as they navigate near home offers insight into spatial perception and memory without a hippocampus
    (2022-08-30) Gagliardo, Anna; Cioccarelli, Sara; Giunchi, Dimitri; Pollonara, Enrica; Colombo, Silvia; Casini, Giovanni; Bingman, Verner P.
    The aim of this study was to exploit detailed analyses of GPS-recorded tracks to better characterise the impact of hippocampal (HF) lesion on spatial memory and perception in the context of homing pigeon navigation when reliant on familiar landscape features near the home loft following repeated releases from the same three locations. As reported previously, following HF lesion, a low spatio-temporal resolution analysis revealed that homing pigeons fly less direct paths home once near the loft. We now further show that 1) HF-lesioned pigeons are less likely to display fidelity to a particular flight path home when released from the same locations multiple times, 2) intact pigeons are more likely to exploit leading-line landscape features, e.g., a road or the border of a woodlot, in developing flight-path fidelity and 3) even when flying a straight path HF-lesioned homing pigeons are more likely to display relatively rapid, oscillatory heading changes as if casting about for sensory, presumably visual information. The flight behaviour differences between the intact and HF-lesioned pigeons persisted across the four releases from the three locations, although the differences became smaller with increasing experience. Taken together, the GPS-track data offer a detailed characterisation of the effects of HF lesion on landscape-based, homing pigeon navigation, offering new insight into the role of the hippocampal formation in supporting memory-related, e.g., fidelity to a familiar route home, and perhaps perceptual-related, e.g., oscillating headings, navigational processes.
  • Data package
    Data from: Pigeons remember visual landmarks after one release and rely upon them more if they are anosmic
    (2020-09-24) Gagliardo, Anna; Pollonara, Enrica; Wikelski, Martin
    Anosmic birds' homing ability is impaired when challenged to navigate over unfamiliar areas. Nevertheless, anosmic pigeons, Columba livia, show unimpaired navigation when released within a familiar area, suggesting that they may rely on familiar visual landmarks for navigation. However, direct evidence for the reliance on familiar visual landmarks during homing in anosmic birds has never been provided. In this study we tracked pigeons subjected singly to one training flight from each of three locations. Prior to their second release from each site, half of the birds were made anosmic while the others were not manipulated. The level of route fidelity was analysed separately for three phases of the homing process, in which familiar visual cues may have different relevance and may be used within different cognitive strategies: (1) ‘Initial decision making’; (2) ‘En route navigation’; (3) ‘Local navigation around home’. Compared to control birds, the anosmic birds flew significantly closer to previously overflown locations in the ‘En route navigation’ phase, while no difference in route fidelity emerged during phases (1) and (3). Our results showed that a single experience is sufficient for pigeons to learn release site features, and that familiar visual landmarks constitute a critical source of navigational information in olfactorily deprived birds during the homing process.
  • Data package
    Data from: The homing pigeons’ olfactory map is affected by geographical barriers
    (2021-01-19) Gagliardo, Anna; Pollonara, Enrica; Wikelski, Martin
    The factors affecting the olfaction-based navigational performances of homing pigeons released at relatively long distance (beyond 100 km from home) has in the past been subject to several investigations both in Germany and Italy using observations of vanishing bearing distributions. These studies highlighted the complexity of long-distance navigation in homing pigeons, which remains a poorly investigated aspect. In this tracking study we report how the homing performances of pigeons housed in Amino (Pisa, Italy) were affected by the presence/absence of a mountain range (the Northern Apennines) interposed between the home and the release site area (release sites: Trans = mountain barrier, Cis = no mountain barrier). We displaced unmanipulated control pigeons, anosmic pigeon, and pigeons transported in purified air to release sites located at a distance ranging between 95 and 246 km from home. There, birds were released without further manipulation. The navigational performances of anosmic pigeons were impaired at both Cis and Trans sites compared to both smelling groups. Both unmanipulated control pigeons and pigeons transported in purified air but allowed to smell environmental air at both the release site and after release displayed unimpaired navigational abilities at the Cis site, but impaired homing success and impaired homeward orientation at the Trans sites. Nevertheless, their homeward component was significantly greater than that of the anosmic birds at both geographical areas. This suggests that the Northern Apennine acts as a geographical barrier affecting the olfactory map accuracy of Amino pigeons, rather than totally reducing its spatial extent.
  • Data package
    Data from: GPS-profiling of retrograde navigational impairments associated with hippocampal lesion in homing pigeons
    (2021-06-15) Gagliardo, Anna; Colombo, Silvia; Pollonara, Enrica; Casini, Giovanni; Rossino, Maria Grazia; Wikelski, Martin; Bingman, Verner P.
    The avian hippocampal formation (HF) is homologous to the mammalian hippocampus and plays a central role in the control of spatial cognition. In homing pigeons, HF supports navigation by familiar landmarks and landscape features. However, what has remained relatively unexplored is the importance of HF for the retention of previously acquired spatial information. For example, to date, no systematic GPS-tracking studies on the retention of HF-dependent navigational memory in homing pigeons have been performed. Therefore, the current study was designed to compare the pre- and post-surgical navigational performance of sham-lesioned control and HF-lesioned pigeons tracked from three different sites located in different directions with respect to home. The pre- and post-surgical comparison of the pigeons’ flight paths near the release sites and before reaching the area surrounding the home loft (4 km radius from the loft) revealed that the control and HF-lesioned pigeons displayed similarly successful retention. By contrast, the HF-lesioned pigeons displayed dramatically and consistently impaired retention in navigating to their home loft during the terminal phase of the homing flight near home, i.e., where navigation is supported by memory for landmark and landscape features. The data demonstrate that HF lesions lead to a dramatic loss of pre-surgically acquired landmark and landscape navigational information while sparing those mechanisms associated with navigation from locations distant from home.
  • Data package
    Data from: Evidence for pre-mnemonic, perceptual neglect of environmental features in hippocampal lesioned pigeons during homing
    (2014-07-31) Gagliardo, Anna; Pollonara, Enrica; Coppola, Vincent J; Santos, Carlos David; Bingman, Verner P.
    The importance of the vertebrate hippocampus in spatial cognition is often related to its broad role in memory. However, in birds, the hippocampus appears to be more specifically involved in spatial processes. The maturing of GPS-tracking technology has enabled a revolution in navigation research, including the expanded possibility of studying brain mechanisms that guide navigation in the field. By GPS-tracking homing pigeons released from distant, unfamiliar sites prior to and after hippocampal lesion, we observed, as has been reported previously, impaired navigational performance postlesion over the familiar/memorized space near the home loft, where topographic features constitute an important source of navigational information. The GPS-tracking revealed that many of the lost pigeons, when lesioned, approached the home area, but nevertheless failed to locate their loft. Unexpectedly, when they were hippocampal-lesioned, the pigeons showed a notable change in their behaviour when navigating over the unfamiliar space distant from home; they actually flew straighter homeward-directed paths than they did prelesion. The data are consistent with the hypothesis that, following hippocampal lesion, homing pigeons respond less to unfamiliar visual, topographic features encountered during homing, and, as such, offer the first evidence for an unforeseen, perceptual neglect of environmental features following hippocampal damage.
  • Data package
    Data from: Unilateral hippocampal lesions and the navigational performance of homing pigeons as revealed by GPS-tracking
    (2022-12-13) Gagliardo, Anna; Pollonara, Enrica; Bingman, Verner P.; Casini, Giovanni
    The left and right hippocampal formation (HF) of the avian brain have been reported to control some different aspects of homing in pigeons. In the current study, we employed GPS-tracking technology and unilateral HF lesions to further explore what if any aspects of a pigeon’s homing flight might be under dominant control by either the left or right HF. Pigeons were released from three locations prior to any experimental manipulation and released repeatedly from the same three sites as sham-lesioned control, right HF-lesioned and left HF-lesioned treatment groups. Analyses of homing performance and virtual vanishing bearings revealed no effect of either lesion treatment. A more in-depth analysis of path efficiency during the initial decision-making, en route and near home phases of a homing flight also revealed no effect of either lesion treatment. A last analysis on the learning and memory for positions along a previously flown route, a proxy for investigating the development of route fidelity, also revealed no effect of either unilateral lesion. However, independent of treatment group, some statistically significant effects were observed with respect to changes in performance across training and the different release sites. The current study revealed no detectable difference between the left and right HF-lesioned pigeons with respect to several navigational parameters of a homing flight. Although in need of supporting experimentation, the results are consistent with the hypothesis that both the left and right HF are similarly able to support several aspects of homing pigeon navigation.
  • Data package
    Data from: Only natural local odours allow homeward orientation in homing pigeons released at unfamiliar sites
    (2018-08-30) Gagliardo, Anna; Pollonara, Enrica; Wikelski, Martin
    According to the olfactory navigation hypothesis, birds are able to exploit the spatial distribution of environmental odourants to determine the direction of displacement and navigate from non-familiar locations. The so-called “olfactory activation hypothesis” challenged the specific role of olfactory cues in navigation by suggesting that olfactory stimuli only activate a navigational system that is based on non-olfactory cues, predicting that even artificial odourants alone are sufficient to allow unimpaired navigation. In this experiment, we compared tracks of experimental birds exposed to different olfactory stimuli before being made anosmic at the release site prior to release. One group of pigeons was exposed to purified air enriched with artificial odourants, while a second group was exposed to environmental air. The birds stimulated with artificial nonsense odourants displayed several behavioural differences from both untreated controls and anosmic pigeons exposed to environmental air prior to release: nonsense odourants birds were unable to determine the home direction, they mostly flew within a space outside the homeward oriented quadrant, and they flew shorter distances on the day of release. Our data failed to support a mere activational role of olfactory stimuli in navigation, and are consistent with the olfactory navigation hypothesis.
  • Data package
    Data from: Right hemisphere advantage in the development of route fidelity in homing pigeons
    (2017-08-01) Pollonara, Enrica; Guilford, Tim; Rossi, Marta; Bingman, Verner P.; Gagliardo, Anna
    Several laboratory studies have revealed functional hemispheric lateralization in birds performing visual tasks. However, the role of functional brain asymmetries in spatial behaviour in natural settings is still poorly investigated. We studied monocularly occluded homing pigeons, Columba livia, to investigate potential differences in the hemispheric control of navigational performance. We GPS-tracked monocularly occluded and control binocular homing pigeons during seven group training releases and a final solitary release from each of two sites. The pigeons were then given one last release from each site after a phase shift of the light-dark cycle under binocular conditions, to distinguish compass-based orientation from landmark-based pilotage. Overall, pigeons homing with the left eye/right hemisphere (RH) displayed a greater fidelity to the familiar space previously experienced than pigeons homing with the right eye/left hemisphere (LH). Another difference between the two monocular groups is that LH pigeons were more likely than RH pigeons to fly with other pigeons during the group training releases. The data support the hypothesis that the left eye/right hemisphere plays a more substantial role as pigeons develop fidelity to certain routes to home from familiar release sites, an enhanced fidelity that may be supported by superior memory for familiar landmarks.
  • Data package
    Data from: Pigeon navigation: exposure to environmental odours prior to release is sufficient for homeward orientation, but not for homing
    (2016-07-05) Gagliardo, Anna; Pollonara, Enrica; Wikelski, Martin
    The role of environmental olfactory information in pigeon navigation has been extensively studied by analysing vanishing bearing distributions and homing performances of homing pigeons subjected to manipulation of their olfactory perception and/or the olfactory information they were exposed to during transportation and at the release site. However, their behaviour during the homing flight remains undocumented. In this experiment we report the analysis of tracks of birds made anosmic at the release site by washing their olfactory mucosa with zinc sulfate. We thus can assess the role of local odours at the release site as well as the role of environmental odours perceived on the way, far from the release site. We observed that pigeons transported and kept at the release site in purified air and made anosmic at the release site were unable to orient towards home and were impaired at homing. By contrast, pigeons allowed to smell environmental odours during transportation and at the release site, although made anosmic prior to release, displayed unimpaired homeward orientation, but nevertheless showed impaired homing performance. These results are consistent with the view that local odour at the release site are critical for determining the direction of displacement (olfactory map) and suggest that pigeons consult the olfactory map also during their homing flight in order to be able to find their way home.
  • Data package
    Data from: Right hemisphere advantage in the development of route fidelity in homing pigeons
    (2017-01-02) Pollonara, Enrica; Guilford, Tim; Rossi, Marta; Bingman, Verner P.; Gagliardo, Anna
    NOTE: A corrected version of this dataset is available. See doi:10.5441/001/1.73h2s043. ABSTRACT: Several laboratory studies have revealed functional hemispheric lateralization in birds performing visual tasks. However, the role of functional brain asymmetries in spatial behaviour in natural settings is still poorly investigated. We studied monocularly occluded homing pigeons, Columba livia, to investigate potential differences in the hemispheric control of navigational performance. We GPS-tracked monocularly occluded and control binocular homing pigeons during seven group training releases and a final solitary release from each of two sites. The pigeons were then given one last release from each site after a phase shift of the light-dark cycle under binocular conditions, to distinguish compass-based orientation from landmark-based pilotage. Overall, pigeons homing with the left eye/right hemisphere (RH) displayed a greater fidelity to the familiar space previously experienced than pigeons homing with the right eye/left hemisphere (LH). Another difference between the two monocular groups is that LH pigeons were more likely than RH pigeons to fly with other pigeons during the group training releases. The data support the hypothesis that the left eye/right hemisphere plays a more substantial role as pigeons develop fidelity to certain routes to home from familiar release sites, an enhanced fidelity that may be supported by superior memory for familiar landmarks.