Taxon:
Corvus corax

No Thumbnail Available
Scientific Name
Corvus corax
Common Name
Common Raven
Northern Raven
Taxa Group
Corvidae
Environment
Move Mode

Search Results

Now showing 1 - 1 of 1
  • Data package
    Data from: Study "Common Ravens in the Eastern Alps" [2017-2020]
    (2022-08-31) Jain, Varalika; Bugnyar, Thomas; Cunningham, Susan J.; Gallego-Abenza, Mario; Loretto, Matthias-Claudio; Sumasgutner, Petra
    Background: Anthropogenic food sources (AFSs) are widespread in human-transformed landscapes and the current scale at which they occur drives ecological change at the individual, population, and community levels. AFSs are exploited extensively by common ravens, Corvus corax. Understanding how raven populations use AFSs can provide insight into their ecological responses to AFSs. Methods: We equipped 81 ravens in the Austrian Alps with GPS-transmitters over a period of 2.75 years. Using these tracking data, we investigated how cohort differences (i.e., age, sex, and origin) and seasonal changes influence raven movement patterns (i.e., occurrence distribution and maximum daily displacement) and AFS-use (i.e., number of AFSs visited and probability of being present at any AFS) at 45 extensively exploited sites. Results: We found that proxies for experience and dominance, inferred by age (i.e., juvenile versus adult) and origin (i.e., wild-caught versus captive-bred-released) cohorts, influenced movement patterns and the number of AFSs visited. However, all individuals were equally likely to be present at AFSs, highlighting the importance of AFSs for non-breeders in the study population. Seasonal changes in environmental conditions that affect energetic demands, the availability of natural and anthropogenic food, and foraging competition, influenced individuals’ occurrence distributions and AFS-use. We found that under harsher conditions in autumn and winter, individuals ranged wider and depended on AFSs to a larger degree. However, contrary to expectation, they were less likely to be present at AFSs in these seasons compared to spring and summer, suggesting a trade-off between time spent moving and exploiting resources. We attribute the small ranging movements exhibited by non-breeders in spring and summer to the presence of highly territorial and socially dominant breeders. As breeders mostly stay and forage within their territories during these seasons, competition at AFSs decrease, thereby increasing the likelihood of individuals being present at any AFS. Conclusions: We emphasize that movement and AFS-use differ according to cohort differences and the seasonality of the environment. Our results highlight that predictable AFSs affect foraging strategies among non-breeding ravens. The extent of AFS-exploitation among non-breeding ravens in our study emphasize the potential of AFSs in shaping raven movement and resource-use.