Gyps himalayensis

No Thumbnail Available
Scientific Name
Gyps himalayensis
Common Name
Himalayan Vulture
Taxa Group
Move Mode

Search Results

Now showing 1 - 3 of 3
  • Data package
    Data from: Longer days enable higher diurnal activity for migratory birds [Himalayan griffons]
    (2021-03-24) Sherub, Sherub; Wikelski, Martin
    (1) Seasonal geophysical cycles strongly influence the activity of life on Earth because they affect environmental conditions like temperature, precipitation, and daylength. An increase in daylight availability during summer is especially enhanced when animals migrate along a latitudinal gradient. Yet, the question of how daylength (i.e. daylight availability) influences the activity patterns of long‐distance, latitudinal migrants is still unclear. (2) Here, we ask whether migration provides benefits to long‐distance migrants by enabling them to increase their diurnal movement activities due to an increase in daylight availability. To answer this question, we tested whether four vastly different species of long‐distance migratory birds--two arctic migrants and two mid‐latitude migrants--can capitalise on day length changes by adjusting their daily activity. (3) We quantified the relationship between daily activity (measured using accelerometer data) and day length, and estimated each species' daily activity patterns. In addition, we evaluated the role of day length as an ultimate driver of bird migration. (4) All four species exhibited longer activity periods during days with more daylight hours, showing a strong positive relationship between total daily activity and day length. The slope of this relationship varied between the different species, with activity increasing 1.5‐fold on average when migrating from wintering to breeding grounds. Underlying mechanisms of these relationships reveal two distinct patterns of daily activity. Flying foragers showed increasing activity patterns, i.e. their daytime activities rose uniformly up to solar noon and decreased until dusk, thereby exhibiting a season‐specific activity slope. In contrast, ground foragers showed a constant activity pattern, whereby they immediately increased their activity to a certain level and maintained this level throughout the day. (5) Our study reveals that long days allow birds to prolong their activity and increase their total daily activity. These findings highlight that daylight availability could be an additional ultimate cause of bird migration and act as a selective agent for the evolution of migration.
  • Data package
    Data from: Behavioural adaptations to flight into thin air
    (2016-10-24) Sherub, Sherub; Wikelski, Martin; Fiedler, Wolfgang; Davidson, Sarah C.
    Soaring raptors can fly at high altitudes of up to 9000 m. The behavioural adjustments to high-altitude flights are largely unknown. We studied thermal- ling flights of Himalayan vultures (Gyps himalayensis) from 50 to 6500 m above sea level, a twofold range of air densities. To create the necessary lift to support the same weight and maintain soaring flight in thin air birds might modify lift coefficient by biophysical changes, such as wing posture and increasing the power expenditure. Alternatively, they can change their flight characteristics. We show that vultures use the latter and increase circle radius by 35% and airspeed by 21% over their flight altitude range. These simple behavioural adjustments enable vultures to move seamlessly during their annual migrations over the Himalaya without increasing energy output to flight in high elevations.
  • Data package
    Data from: Vultures respond to challenges of near-ground thermal soaring by varying bank angle
    (2018-11-27) Williams, Hannah J.; Shepard, Emily L.C.; Duriez, Olivier
    Many large birds rely on thermal soaring flight to travel cross-country. As such, they are under selective pressure to minimise the time spent gaining altitude in thermal updrafts. Birds should be able to maximise their climb rates by maintaining a position close to the thermal core through careful selection of bank angle and airspeed, however, there have been few direct measurements of either parameter. Here we apply a novel methodology to quantify the bank angles selected by soaring birds using on-board magnetometers. We couple these data with airspeed measurements to parameterise the soaring envelope of two species of Gyps vulture, from which it is possible to predict “optimal” bank angles. Our results show that these large birds respond to the challenges of gaining altitude in the initial phase of the climb, where thermal updrafts are weak and narrow, by adopting relatively high, and conserved, bank angles (25-35°). The angle of bank decreased with increasing altitude, in a manner that was broadly consistent with a strategy of maximising the rate of climb. However, the lift coefficients estimated in our study were lower than those predicted by theoretical models and wind-tunnel studies. Overall, our results highlight how the relevant currency for soaring performance changes within individual climbs; when thermal radius is limiting, birds vary bank angle and maintain a constant airspeed, but speed increases later in the climb in order to respond to decreasing air density.