Sensor:
Solar Geolocator Raw

No Thumbnail Available
Name
Solar Geolocator Raw
External ID
solar-geolocator-raw
Is Location Sensor

Search Results

Now showing 1 - 10 of 19
  • Data package
    Data from: Study "Switzerland Biel - Long term study on migratory movement of Alpine swifts (Apus melba)"
    (2020-11-26) Meier, Christoph M.; Liechti, Felix
    For migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
  • Data package
    Data from: Spatiotemporally variable snow properties drive habitat use of an Arctic mesopredator
    (2023-08-16) Glass, Thomas W.; Robards, Martin D.
    Climate change is rapidly altering the composition and availability of snow, with implications for snow-affected ecological processes, including reproduction, predation, habitat selection, and migration. How snowpack changes influence these ecological processes is mediated by physical snowpack properties, such as depth, density, hardness, and strength, each of which is in turn affected by climate change. Despite this, it remains difficult to obtain meaningful snow information relevant to the ecological processes of interest, precluding a mechanistic understanding of these effects. This problem is acute for species that rely on particular attributes of the subnivean space, for example depth, thermal resistance, and structural stability, for key life-history processes like reproduction, thermoregulation, and predation avoidance. We used a spatially explicit snow evolution model to investigate how habitat selection of a species that uses the subnivean space, the wolverine, is related to snow depth, snow density, and snow melt on Arctic tundra. We modeled these snow properties at a 10 m spatial and a daily temporal resolution for 3 years, and used integrated step selection analyses of GPS collar data from 21 wolverines to determine how these snow properties influenced habitat selection and movement. We found that wolverines selected deeper, denser snow, but only when it was not undergoing melt, bolstering the evidence that these snow properties are important to species that use the Arctic snowpack for subnivean resting sites and dens. We discuss the implications of these findings in the context of climate change impacts on subnivean species.
  • Data package
    Data from: A pan-European, multi-population assessment of migratory connectivity in a near-threatened migrant bird
    (2015-07-22) Finch, Tom; Saunders, Philip; Catry, Inês; Mardega, Ieva; Mayet, Patrick; Račinskis, Edmunds; Sackl, Peter; Schwartz, Timothée; Tiefenbach, Michael; Hewson, Chris; Franco, Aldina; Butler, Simon James
    Aim: The extent to which individuals from different breeding populations mix throughout the non-breeding season (i.e. ‘migratory connectivity’) has important consequences for population dynamics and conservation. Given recent declines of long-distance migrant birds, multi-population tracking studies are crucial in order to assess the strength of migratory connectivity and to identify key sites en route. Here, we present the first large-scale analysis of migration patterns and migratory connectivity in the globally near-threatened European roller Coracias garrulus. Location: Breeding area: Europe; passage area: Mediterranean, sub-Saharan Africa, Arabian Peninsula; wintering area: southern Africa Methods: We synthesise new geolocator data with existing geolocator, satellite tag and ring recovery data from eight countries across Europe. We describe routes and stopover sites, analyse the spatial pattern of winter sites with respect to breeding origin, and quantify the strength of connectivity between breeding and winter sites. Results: We demonstrate the importance of the northern savannah zone as a stopover region and reveal the easterly spring loop (via Arabia) and leap-frog migration of rollers from eastern populations. Whilst there was some overlap between individuals from different populations over winter, their distribution was non-random, with positive correlations between breeding and autumn/winter longitude as well as between pairwise distance matrices of breeding and winter sites. Connectivity was stronger for eastern populations than western ones. Main conclusions: The moderate levels of connectivity detected here may increase the resilience of breeding populations to localised habitat loss on the winter quarters. We also highlight passage regions crucial for the successful conservation of Roller populations, including the Sahel/Sudan savannah for all populations, and the Horn of Africa/Arabian Peninsula for north-eastern rollers.
  • Data package
    Data from: Tracking the migration of a nocturnal aerial insectivore in the Americas
    (2017-04-07) English, Philina A.; Mills, Alexander M.; Cadman, Michael D.; Heagy, Audrey E.; Rand, Greg J.; Green, David J.; Nocera, Joseph J.
    Background: Populations of Eastern Whip-poor-will (Antrostomus vociferous) appear to be declining range-wide. While this could be associated with habitat loss, declines in populations of many other species of migratory aerial insectivores suggest that changes in insect availability and/or an increase in the costs of migration could also be important factors. Due to their quiet, nocturnal habits during the non-breeding season, little is known about whip-poor-will migration and wintering locations, or the extent to which different breeding populations share risks related to non-breeding conditions. Results: We tracked 20 males and 2 females breeding in four regions of Canada using geolocators. Wintering locations ranged from the gulf coast of central Mexico to Costa Rica. Individuals from the northern-most breeding site and females tended to winter furthest south, although east-west connectivity was low. Four individuals appeared to cross the Gulf of Mexico either in spring or autumn. On southward migration, most individuals interrupted migration for periods of up to 15 days north of the Gulf, regardless of their subsequent route. Fewer individuals showed signs of a stopover in spring. Conclusions: Use of the southeastern United States for migratory stopover and a concentration of wintering locations in Guatemala and neighbouring Mexican provinces suggest that both of these regions should be considered potentially important for Canadian whip-poor-wills. This species shows some evidence of both "leapfrog" and sex-differential migration, suggesting that individuals in more northern parts of their breeding range could have higher migratory costs.
  • Data package
    Data from: White-crested Elaenias (Elaenia albiceps chilensis) breeding across Patagonia exhibit similar spatial and temporal movement patterns throughout the year
    (2024-04-02) Jara, Rocío Fernanda; Jiménez, Jaime Enrique; Ricardo, Rozzi
    For migratory birds, events happening during any period of their annual cycle can have strong carry-over effects on the subsequent periods. The strength of carry-over effects between non-breeding and breeding grounds can be shaped by the degree of migratory connectivity: whether or not individuals that breed together also migrate and/or spend the non-breeding season together. We assessed the annual cycle of the White-crested Elaenia (Elaenia albiceps chilensis), the longest-distance migrant flycatcher within South America, which breeds in Patagonia and spends the non-breeding season as far north as Amazonia. Using light-level geolocators, we tracked the annual movements of elaenias breeding on southern Patagonia and compared it with movements of elaenias breeding in northern Patagonia (1,365 km north) using Movebank Repository data. We found that elaenias breeding in southern Patagonia successively used two separate non-breeding regions while in their Brazilian non-breeding grounds, as already found for elaenias breeding in the northern Patagonia site. Elaenias breeding in both northern and southern Patagonia also showed high spread in their non-breeding grounds, high non-breeding overlap among individuals from both breeding sites, and similar migration phenology, all of which suggests weak migratory connectivity for this species. Elucidating the annual cycle of this species, with particular emphasis on females and juveniles, still requires further research across a wide expanse of South America. This information will be critical to understanding and possibly predicting this species’ response to climate change and rapid land-use changes.
  • Data package
    Data from: Migratory routes of red-necked phalaropes Phalaropus lobatus breeding in southern Chukotka revealed by geolocators
    (2018-06-13) Mu, Tong; Tomkovich, Pavel S.; Loktionov, Egor Y.; Syroechkovskiy, Evgeny E.; Wilcove, David S.
    The migration routes of Red‐necked Phalaropes breeding around the Bering Sea are poorly known, despite the fact that the Bering Sea could mark the boundary between the East Palearctic populations that winter in the Pacific Ocean around the East Indies and the West Nearctic populations that winter in the Pacific Ocean off the coast of South America. Geolocator data retrieved from two male phalaropes tagged in southern Chukotka, Far Eastern Russia, confirm that birds breeding in this region belong to the East Palearctic population and winter in the East Indies, suggesting that the division line with the West Nearctic population is farther to the East. The routes taken by the two phalaropes were almost entirely pelagic, totaling around 18,000–20,000 km round‐trip, with the birds continuously on the move during migration, rather than resident in any particular stopover site, contrary to most other migratory shorebirds.
  • Data package
    Data from: Non‐breeding areas and timing of migration in relation to weather of Scottish‐breeding common sandpipers Actitis hypoleucos
    (2019-02-01) Summers, Ron W.; de Raad, A. Louise; Bates, Brian; Etheridge, Brian; Elkins, Norman
    The number of breeding common sandpipers has declined in Britain due to poorer return rates from non‐breeding areas. To investigate little known aspects of their annual cycle, breeding common sandpipers were fitted with geolocators to track their migrations and determine their non‐breeding areas. Ten tagged birds left Scotland on 9 July (median dates and durations are given throughout the abstract). Short‐term staging was carried out by some birds in England and Ireland, then for longer by most birds in Iberia before continuing to West Africa, arriving on 28 July. Six birds spent most of the non‐breeding season (October–February) on the coast of Guinea‐Bissau, suggesting that this is a key area. Single birds occurred in Sierra Leone, Guinea, the Canary Islands and Western Sahara. The southward migration from Scotland took 17.5 days (range 1.5‐24 days), excluding the initial fuelling period. The first northward movement from Africa was on 12 April. Staging occurred in either Morocco, Iberia or France. Arrival in Scotland was on 2 May. The northward migration took 16 days (range 13.5‐20.5 days). The main migration strategy involved short‐ and medium‐range flights, using tail‐winds in most cases. Variation in strategy was associated with departure date; birds that left later staged for shorter durations. Coastal West Africa provides two major habitats for common sandpipers: mudflats associated with mangroves and rice fields. Although the area of mangrove has been depleted, the scale of loss has probably been insufficient to account for the decline in sandpiper numbers. Rice fields are expanding, providing feeding areas for water‐birds. Meteorological data during the migrations suggest that the weather during the southward migration is unlikely to contribute to a population decline but strong cross‐winds or head‐winds during the northward migration to the breeding grounds may do so.
  • Data package
    Data from: Migratory timing, rate, routes and wintering areas of white-crested elaenia (Elaenia albiceps chilensis), a key seed disperser for Patagonian forest regeneration
    (2017-01-30) Cueto, Victor R.; Bravo, Susana P.
    Migratory animals often play key ecological roles within the communities they visit throughout their annual journeys. As a consequence of the links between biomes mediated by migrants, changes in one biome could affect remote areas in unpredictable ways. Migratory routes and timing of most Neotropical austral migrants, which breed at south temperate latitudes of South America and overwinter closer to or within tropical latitudes of South America, have yet to be described in detail. As a result, our understanding about how these birds provide links between South American biomes is almost non-existent. White-crested Elaenia (Elaenia albiceps chilensis) is a long-distance austral migrant that breeds in the Patagonian Forest biome and overwinters in tropical South America. Because this small flycatcher plays a key role in the regeneration of this ecosystem, our objective was to describe the annual cycle of White-crested elaenias to evaluate the degree of migratory connectivity between breeding and wintering areas and therefore to determine if there are specific biomes of northern South America linked by elaenias to Patagonian forests. Fifteen individuals were successfully tracked throughout a complete migration cycle using miniature light-level geolocators. All individuals resided and moved through the same general regions. During fall (March-April-May), elaenias were located in the Caatinga and the Atlantic Forest biomes, from Rio de Janeiro to the region near Salvador da Bahia, Brazil. During winter (June-July-Aug), birds were located further inland, within the Cerrado biome. Birds used three different routes during fall migration. Our results indicate that some individuals use a direct route, flying between 500-600 km/day, crossing desert and grasslands, while others took a detour, flying 100-200 km/day through forested areas with refueling opportunities. All birds used the Yunga forest during spring migration, with ten out 15 individuals showing a clear counterclockwise loop trajectories throughout their annual cycle. None of the elaenias passed through Amazonia, traveled to western South America or crossed the Equator. Eleanias exhibited a high migratory connectivity between breeding area in Patagonian Forests and winter areas, Atlantic Forest and Cerrado. Our results suggest that Patagonian Forests could be strongly impacted by changes in those biomes or in the Yungas.
  • Data package
    Data from: At-sea distribution and prey selection of Antarctic petrels and commercial krill fisheries
    (2016-10-10) Descamps, Sébastien; Tarroux, Arnaud; Cherel, Yves; Delord, Karine; Godø, Olaf R.; Kato, Akiko; Krafft, Bjørn A.; Lorentsen, Svein-Håkon; Ropert-Coudert, Yan; Skaret, Georg; Varpe, Øystein
    Commercial fisheries may impact marine ecosystems and affect populations of predators like seabirds. In the Southern Ocean, there is an extensive fishery for Antarctic krill Euphausia superba that is projected to increase further. Comparing distribution and prey selection of fishing operations versus predators is needed to predict fishery-related impacts on krill-dependent predators. In this context, it is important to consider not only predators breeding near the fishing grounds but also the ones breeding far away and that disperse during the non-breeding season where they may interact with fisheries. In this study, we first quantified the overlap between the distribution of the Antarctic krill fisheries and the distribution of a krill dependent seabird, the Antarctic petrel Thalassoica antarctica, during both the breeding and non-breeding season. We tracked birds from the world biggest Antarctic petrel colony (Svarthamaren, Dronning Maud Land), located >1000 km from the main fishing areas, during three consecutive seasons. The overall spatial overlap between krill fisheries and Antarctic petrels was limited but varied greatly among and within years, and was high in some periods during the non-breeding season. In a second step, we described the length frequency distribution of Antarctic krill consumed by Antarctic petrels, and compared this with results from fisheries, as well as from diet studies in other krill predators. Krill taken by Antarctic petrels did not differ in size from that taken by trawls or from krill taken by most Antarctic krill predators. Selectivity for specific Antarctic krill stages seems generally low in Antarctic predators. Overall, our results show that competition between Antarctic petrels and krill fisheries is currently likely negligible. However, if krill fisheries are to increase in the future, competition with the Antarctic petrel may occur, even with birds breeding thousands of kilometers away.
  • Data package
    Data from: Concentration of a widespread breeding population in few critically important nonbreeding areas: migratory connectivity in the Prothonotary Warbler
    (2019-07-03) Tonra, Christopher M.; Hallworth, Michael T.; Boves, Than J.; Reese, Jessie; Bulluck, Lesley P.; Johnson, Matthew; Viverette, Cathy; Percy, Katie; Ames, Elizabeth M.; Matthews, Alix; Slevin, Morgan C.; Wilson, R. Randy; Johnson, Erik I.
    One of the greatest challenges to informed conservation of migratory animals is elucidating spatiotemporal variation in distributions. Without such information, it is impossible to understand full-annual-cycle ecology and effectively implement conservation actions that address where and when populations are most limited. We deployed and recovered light-level geolocators (n = 34) at 6 breeding sites in North America across the breeding range of a declining long-distance migratory bird, the Prothonotary Warbler (Protonotaria citrea). We sought to determine migratory routes, stopover location and duration, and the location of overwintering grounds. We found that the species exhibits a large-scale, east‒west split in migratory routes and weak migratory connectivity across its range. Specifically, almost all individuals, regardless of breeding origin, overlapped in their estimated wintering location in northern Colombia, in an area 20% the size of the breeding range. Additionally, most of the individuals across all breeding locations concentrated in well-defined stopover locations in Central America while en route to Colombia. Although error inherent in light-level geolocation cannot be fully ruled out, surprisingly much of the estimated wintering area included inland areas even though the Prothonotary Warbler is considered a specialist on coastal mangroves in winter. Based on these results, conservation efforts directed at very specific nonbreeding geographical areas will potentially have benefits across most of the breeding population. Our findings highlight the importance of using modern technologies to validate assumptions about little-studied portions of a species’ annual cycle, and the need to distribute sampling across its range.