Sensor:
Accessory Measurements

No Thumbnail Available
Name
Accessory Measurements
External ID
accessory-measurements
Is Location Sensor

Search Results

Now showing 1 - 2 of 2
  • Data package
    Data from: Spatiotemporally variable snow properties drive habitat use of an Arctic mesopredator
    (2023-08-16) Glass, Thomas W.; Robards, Martin D.
    Climate change is rapidly altering the composition and availability of snow, with implications for snow-affected ecological processes, including reproduction, predation, habitat selection, and migration. How snowpack changes influence these ecological processes is mediated by physical snowpack properties, such as depth, density, hardness, and strength, each of which is in turn affected by climate change. Despite this, it remains difficult to obtain meaningful snow information relevant to the ecological processes of interest, precluding a mechanistic understanding of these effects. This problem is acute for species that rely on particular attributes of the subnivean space, for example depth, thermal resistance, and structural stability, for key life-history processes like reproduction, thermoregulation, and predation avoidance. We used a spatially explicit snow evolution model to investigate how habitat selection of a species that uses the subnivean space, the wolverine, is related to snow depth, snow density, and snow melt on Arctic tundra. We modeled these snow properties at a 10 m spatial and a daily temporal resolution for 3 years, and used integrated step selection analyses of GPS collar data from 21 wolverines to determine how these snow properties influenced habitat selection and movement. We found that wolverines selected deeper, denser snow, but only when it was not undergoing melt, bolstering the evidence that these snow properties are important to species that use the Arctic snowpack for subnivean resting sites and dens. We discuss the implications of these findings in the context of climate change impacts on subnivean species.
  • Data package
    Data from: Study "Rhinoceros Auklet North American Pacific Coast (GLS)"
    (2024-10-18) Hipfner, J. Mark; Crossin, Glenn T.; Studholme, Katharine R.; Drever, Mark C.; Domalik, Alice D.; Cross, Cayle J.R.; Beck, Jessie N.; Bradley, Russell W.; Carle, Ryan D.; Good, Thomas P.; Hatch, Scott A.; Hodum, Peter J.; Pearson, Scott F.; Rojek, Nora A.; Slater, Leslie; Will, Alexis P.
    Models of migratory behavior predict trade-offs between fitness costs and benefits with respect to migration distance. Shorter migration distances may confer a fitness benefit by facilitating earlier breeding, however this is rarely investigated. We tested this hypothesis using a large-scale geolocation (GLS) dataset from 109 rhinoceros auklets (Cerorhinca monocerata), a differen- tially migrating seabird, that was tagged at 12 breeding colonies along the Pacific Coast of North America, spanning southern California to the eastern Aleutian Islands, Alaska. Using GLS-based position estimates, we determined the geographic centroid of the pelagic areas occupied by birds in winter (1 January–28 February) and then calculated the distance between their winter- ing centroids and colony of origin. We then used GLS light-intensity and salt-water immersion (wet/dry) data to determine each individual's date of egg-laying the following spring. Rhinoceros auklets were very widely distributed across the northeastern Pacific Ocean in winter. Among all individuals, the distance between winter centroids and breeding colonies ranged from < 100 to >2500km, being greater among individuals originating from colonies at higher latitudes. As predicted, migration distance and colony latitude were positively related to lay date: after accounting for colony-level differences in phenology, individuals that migrated shorter distances tended to lay their eggs earlier, a pattern that emerged across all populations. Our study links the migration distance of rhinoceros auklets to a fitness-related outcome, underscoring the selective pressure that migration exerts on subsequent breeding activity.