Sensor:Accessory Measurements
Accessory Measurements
No Thumbnail Available
Name
Accessory Measurements
External ID
accessory-measurements
Is Location Sensor
4 results
Search Results
Now showing 1 - 4 of 4
- Data packageData from: Common noctules exploit low levels of the aerosphere(2019-02-21) O'Mara, M. Teague; Wikelski, Martin; Kranstauber, Bart; Dechmann, Dina K.N.Aerial habitats present a challenge to find food across a large potential search volume, particularly for insectivorous bats that rely on echolocation calls with limited detection range and may forage at heights over 1000 m. To understand how bats use vertical space, we tracked one to five foraging flights of eight common noctules (Nyctalus noctula). Bats were tracked for their full foraging session (87.27 ± 24 mins) using high-resolution atmospheric pressure radio transmitters that allowed us to calculate height and wingbeat frequency. Bats used diverse flight strategies, but generally flew lower than 40 m, with scouting flights to 100 m and a maximum of 300 m. We found no influence of weather on height and high-altitude ascents were not preceded by an increase in foraging effort. Wingbeat frequency was independent from climbing or descending flight, and bats skipped wingbeats or glided in 10% of all observations. Wingbeat frequency was positively related to capture mass, and wingbeat frequency was positively related to time of night, indicating an effect of load increase over a foraging bout. Overall, individuals used a wide range of airspace including altitudes that put them at increased risk from human-made structures. Further work is needed to test the context of these flight decisions, particularly as individuals migrate throughout Europe.
- Data packageData from: Re-colonization by common eiders (Somateria mollissima) in the Aleutian Archipelago following removal of introduced arctic foxes (Vulpes lagopus)(2015-05-19) Petersen, Margaret R.; Byrd, G. Vernon; Sonsthagen, Sarah A.; Sexon, Matthew G.Islands provide refuges for populations of many species where they find safety from predators, but the introduction of predators frequently results in elimination or dramatic reductions in island-dwelling organisms. When predators are removed, re-colonization for some species occurs naturally, and inter-island phylogeographic relationships and current movement patterns can illuminate processes of colonization. We studied a case of re-colonization of common eiders (Somateria mollissima) following removal of introduced arctic foxes (Vulpes lagopus) in the Aleutian Archipelago, Alaska. We expected common eiders to resume nesting on islands cleared of foxes and to re-colonize from nearby islets, islands, and island groups. We thus expected common eiders to show limited genetic structure indicative of extensive mixing among island populations. Satellite telemetry was used to record current movement patterns of female common eiders from six islands across three island groups. We collected genetic data from these and other nesting common eiders at 14 microsatellite loci and the mitochondrial DNA control region to examine population genetic structure, historical fluctuations in population demography, and gene flow. Our results suggest recent interchange among islands. Analysis of microsatellite data supports satellite telemetry data of increased dispersal of common eiders to nearby areas and little between island groups. Although evidence from mtDNA is suggestive of female dispersal among island groups, gene flow is insufficient to account for recolonization and rapid population growth. Instead, near-by remnant populations of common eiders contributed substantially to population expansion, without which re-colonization would have likely occurred at a much lower rate. Genetic and morphometric data of common eiders within one island group two and three decades after re-colonization suggests reduced movement of eiders among islands and little movement between island groups after populations were re-established. We predict that re-colonization of an island group where all common eiders are extirpated could take decades.
- Data packageData from: Migration strategies of the Baltic Dunlin: rapid jump migration in the autumn but slower skipping type spring migration(2017-12-31) Pakanen, Veli-Matti; Jaakkonen, Tuomo; Saarinen, Joni; Rönkä, Nelli; Thomson, Robert L.; Koivula, KariMigration during spring is usually faster than during autumn because of competition for breeding territories. In some cases, however, the costs and benefits associated with the environment can lead to slower spring migration, but examples are quite rare. We compared seasonal migration strategies of the endangered Baltic population of the dunlin (Calidris alpina schinzii) using light-level geolocator data from 26 individuals breeding in Finland. Autumn migration was faster, with individuals showing a “jump” and “skipping” migration strategy characterised by fewer stationary periods, shorter total stopping time and faster flight. Spring migration was slower, with individuals using a “skipping” strategy. The duration of migration was longer for early departing birds during spring but not during autumn suggesting that early spring migrants are prevented from arriving to the breeding areas or that fueling conditions are worse on the stopover sites for early arriving individuals. Dunlins showed high migratory connectivity. All individuals had one long staging at the Wadden Sea in the autumn after which half of the individuals flew 4500 km non-stop to Banc d'Arguin, Mauritania. The other half stopped briefly on the Atlantic coast on their way to Mauritania. One bird wintered on the coast of Portugal. Nine individuals that carried geolocators for two years were site faithful to their final non-breeding sites. Based on the strategies during the non-breeding period we identified, Baltic dunlin may be especially vulnerable to rapid environmental changes at the staging and non-breeding areas. Consequently, the preservation of the identified non-breeding areas is important for their conservation.
- Data packageData from: Satellite tracking a wide‐ranging endangered vulture species to target conservation actions in the Middle East and East Africa(2019-12-02) Buechley, Evan R.; Şekercioğlu, Çağan H.Vultures comprise the most endangered avian foraging guild (obligate scavengers) and their loss from ecosystems can trigger trophic cascades, mesopredator release, and human rabies epidemics, indicating their keystone species status. Vultures’ extremely large home ranges, which often cross international borders of countries that have differing laws and capacity for wildlife conservation, makes conserving them challenging. However, satellite-tracking data can be used to identify habitat preferences and critical sites to target conservation actions. We tracked 16 Egyptian Vultures, Neophron percnopterus, in the Middle East and East Africa. We used dynamic Brownian bridge movement models to calculate home ranges and core-use areas, and we analyzed habitat use in a resource selection framework. Combined summer and winter ranges (99% utilization distributions) of all birds covered 209,800 and 274,300 km2, respectively. However, the core-use areas (50% utilization distributions) in the summer and winter ranges, accounted for only 0.4–1.1% of this area (900 and 3100 km2, respectively). These core-use areas are where the home ranges of multiple individuals overlapped and/or where individuals spent a lot of time, such as feeding and roosting sites, and are places where conservation actions could focus. Resource selection models predicted Egyptian Vulture occurrence throughout little-studied parts of the species’ range in the Middle East and East Africa, and revealed strong selection for proximity to highways, power distribution lines, and towns. While providing roosts (e.g. power pylons) and food (e.g. garbage dumps), anthropogenic features may also function as ecological traps by increasing exposure to electrocution and dietary toxins.