Sensor:
Accessory Measurements

No Thumbnail Available
Name
Accessory Measurements
External ID
accessory-measurements
Is Location Sensor

Search Results

Now showing 1 - 2 of 2
  • Data package
    Data from: Re-colonization by common eiders (Somateria mollissima) in the Aleutian Archipelago following removal of introduced arctic foxes (Vulpes lagopus)
    (2015-05-19) Petersen, Margaret R.; Byrd, G. Vernon; Sonsthagen, Sarah A.; Sexon, Matthew G.
    Islands provide refuges for populations of many species where they find safety from predators, but the introduction of predators frequently results in elimination or dramatic reductions in island-dwelling organisms. When predators are removed, re-colonization for some species occurs naturally, and inter-island phylogeographic relationships and current movement patterns can illuminate processes of colonization. We studied a case of re-colonization of common eiders (Somateria mollissima) following removal of introduced arctic foxes (Vulpes lagopus) in the Aleutian Archipelago, Alaska. We expected common eiders to resume nesting on islands cleared of foxes and to re-colonize from nearby islets, islands, and island groups. We thus expected common eiders to show limited genetic structure indicative of extensive mixing among island populations. Satellite telemetry was used to record current movement patterns of female common eiders from six islands across three island groups. We collected genetic data from these and other nesting common eiders at 14 microsatellite loci and the mitochondrial DNA control region to examine population genetic structure, historical fluctuations in population demography, and gene flow. Our results suggest recent interchange among islands. Analysis of microsatellite data supports satellite telemetry data of increased dispersal of common eiders to nearby areas and little between island groups. Although evidence from mtDNA is suggestive of female dispersal among island groups, gene flow is insufficient to account for recolonization and rapid population growth. Instead, near-by remnant populations of common eiders contributed substantially to population expansion, without which re-colonization would have likely occurred at a much lower rate. Genetic and morphometric data of common eiders within one island group two and three decades after re-colonization suggests reduced movement of eiders among islands and little movement between island groups after populations were re-established. We predict that re-colonization of an island group where all common eiders are extirpated could take decades.
  • Data package
    Data from: Satellite tracking a wide‐ranging endangered vulture species to target conservation actions in the Middle East and East Africa
    (2019-12-02) Buechley, Evan R.; Şekercioğlu, Çağan H.
    Vultures comprise the most endangered avian foraging guild (obligate scavengers) and their loss from ecosystems can trigger trophic cascades, mesopredator release, and human rabies epidemics, indicating their keystone species status. Vultures’ extremely large home ranges, which often cross international borders of countries that have differing laws and capacity for wildlife conservation, makes conserving them challenging. However, satellite-tracking data can be used to identify habitat preferences and critical sites to target conservation actions. We tracked 16 Egyptian Vultures, Neophron percnopterus, in the Middle East and East Africa. We used dynamic Brownian bridge movement models to calculate home ranges and core-use areas, and we analyzed habitat use in a resource selection framework. Combined summer and winter ranges (99% utilization distributions) of all birds covered 209,800 and 274,300 km2, respectively. However, the core-use areas (50% utilization distributions) in the summer and winter ranges, accounted for only 0.4–1.1% of this area (900 and 3100 km2, respectively). These core-use areas are where the home ranges of multiple individuals overlapped and/or where individuals spent a lot of time, such as feeding and roosting sites, and are places where conservation actions could focus. Resource selection models predicted Egyptian Vulture occurrence throughout little-studied parts of the species’ range in the Middle East and East Africa, and revealed strong selection for proximity to highways, power distribution lines, and towns. While providing roosts (e.g. power pylons) and food (e.g. garbage dumps), anthropogenic features may also function as ecological traps by increasing exposure to electrocution and dietary toxins.