Person:
Jansen, Patrick A.

Loading...
Profile Picture
Email Address
Affiliation
ORCID
Birth Date
Job Title
Last Name
Jansen
First Name
Patrick A.
Creator of
Editor of
Reviewer of
Copyright Holder of
Data Contributor of
Funder of
Translator of
Other Contributor of

Search Results

Now showing 1 - 3 of 3
  • Data package
    Data from: The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers
    (2016-01-12) Kays, Roland; Jansen, Patrick A.; Knecht, Elise M.H.; Vohwinkel, Reinhard; Wikelski, Martin
    Seed dispersal is critical to understanding forest dynamics but is hard to study because tracking seeds is difficult. Even for the best-studied dispersal system of the Neotropics, Virola nobilis, the dispersal kernel remains unknown. We combined high-resolution GPS/3D-acceleration bird tracking, seed-retention experiments, and field observations to quantify dispersal of V. nobilis by their principal dispersers, Ramphastos toucans. We inferred feeding events from movement data, and then estimated spatiotemporally explicit seed-dispersal kernels. Wild toucans moved an average of 1.8 km d^-1 with two distinct activity peaks. Seed retention time in captive toucans averaged 25.5 min (range 4-98 min). Estimated seed dispersal distance averaged 144 +/- 147 m, with a 56% likelihood of dispersal >100 m, two times further than the behaviour-naive estimate from the same data. Dispersal was furthest for seeds ingested in the morning, and increased with seed retention time, but only up to 60 min after feeding. Our study supports the long-standing hypothesis that toucans are excellent dispersers of Virola seeds. To maximize seed dispersal distances trees should ripen fruit in the morning when birds move the most, and produce fruits with gut-processing times around 60 min. Our study demonstrates how new tracking technology can yield nuanced seed dispersal kernels for animals that cannot be directly observed.
  • Data package
    Data from: The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers
    (2012-03-20) Kays, Roland; Jansen, Patrick A.; Knecht, Elise M.H.; Wikelski, Martin; Vohwinkel, Reinhard
    NOTE: A corrected version of this dataset is available. See doi:10.5441/001/1.f32gn841. ABSTRACT: Seed dispersal is critical to understanding forest dynamics but is hard to study because tracking seeds is difficult. Even for the best-studied dispersal system of the Neotropics, Virola nobilis, the dispersal kernel remains unknown. We combined high-resolution GPS/3D-acceleration bird tracking, seed-retention experiments, and field observations to quantify dispersal of V. nobilis by their principal dispersers, Ramphastos toucans. We inferred feeding events from movement data, and then estimated spatio-temporally explicit seed-dispersal kernels. Wild toucans moved an average of 1.8 km d−1 with two distinct activity peaks. Seed retention time in captive toucans averaged 25.5 min (range 4–98 min). Estimated seed dispersal distance averaged 144 ± 147 m, with a 56% likelihood of dispersal >100 m, two times further than the behaviour-naive estimate from the same data. Dispersal was furthest for seeds ingested in the morning, and increased with seed retention time, but only up to 60 min after feeding. Our study supports the long-standing hypothesis that toucans are excellent dispersers of Virola seeds. To maximize seed dispersal distances trees should ripen fruit in the morning when birds move the most, and produce fruits with gut-processing times around 60 min. Our study demonstrates how new tracking technology can yield nuanced seed dispersal kernels for animals that cannot be directly observed.
  • Data package
    Data from: Thieving rodents as substitute dispersers of megafaunal seeds
    (2012-06-27) Jansen, Patrick A.; Hirsch, Ben T.; Emsens, Willem-Jan; Zamora-Gutierrez, Veronica; Wikelski, Martin; Kays, Roland
    The Neotropics have many plant species that seem to be adapted for seed dispersal by megafauna that went extinct in the late Pleistocene. Given the crucial importance of seed dispersal for plant persistence, it remains a mystery how these plants have survived more than 10,000 y without their mutualist dispersers. Here we present support for the hypothesis that secondary seed dispersal by scatter-hoarding rodents has facilitated the persistence of these large-seeded species. We used miniature radio transmitters to track the dispersal of reputedly megafaunal seeds by Central American agoutis, which scatter-hoard seeds in shallow caches in the soil throughout the forest. We found that seeds were initially cached at mostly short distances and then quickly dug up again. However, rather than eating the recovered seeds, agoutis continued to move and recache the seeds, up to 36 times. Agoutis dispersed an estimated 35% of seeds for >100 m. An estimated 14% of the cached seeds survived to the next year, when a new fruit crop became available to the rodents. Serial video-monitoring of cached seeds revealed that the stepwise dispersal was caused by agoutis repeatedly stealing and recaching each other’s buried seeds. Although previous studies suggest that rodents are poor dispersers, we demonstrate that communities of rodents can in fact provide highly effective long-distance seed dispersal. Our findings suggest that thieving scatter-hoarding rodents could substitute for extinct megafaunal seed dispersers of tropical large-seeded trees.