Data from: Study "Siberian rubythroat tracking from Qinghai, China"

Citation
Zhao T, Heim W, van Toor ML, Zhang G, Liu Z, Song G, Hellström M, Liu Y, Bensch S, Wertheim B, Lei F, Helm B. 2024. Data from: Study "Siberian rubythroat tracking from Qinghai, China". Movebank Data Repository. https://doi.org/10.5441/001/1.333
Abstract
Background: Small songbirds respond and adapt to various geographical barriers during their annual migration. Global flyways reveal the diverse migration strategies in response to different geographical barriers, among which are high-elevation plateaus. However, few studies have been focused on the largest and highest plateau in the world, the Qinghai–Tibet Plateau (QTP) which poses a significant barrier to migratory passerines. The present study explored the annual migration routes and strategies of a population of Siberian Rubythroats (Calliope calliope) that breed on the north-eastern edge of the QTP. Methods: Over the period from 2021 to 2023, we applied light-level geolocators (13 deployed, seven recollected), archival GPS tags (45 deployed, 17 recollected), and CAnMove multi-sensor loggers (with barometer, accelerometer, thermometer, and light sensor, 20 deployed, six recollected) to adult males from the breeding population of Siberian Rubythroat on the QTP. Here we describe the migratory routes and phenology extracted or inferred from the GPS and multi-sensor logger data, and used a combination of accelerometric and barometric data to describe the elevational migration pattern, flight altitude, and flight duration. All light-level geolocators failed to collect suitable data. Results: Both GPS locations and positions derived from pressure-based inference revealed that during autumn, the migration route detoured from the bee-line between breeding and wintering grounds, leading to a gradual elevational decrease. The spring route was more direct, with more flights over mountainous areas in western China. This different migration route during spring probably reflects a strategy for faster migration, which corresponds with more frequent long nocturnal migration flights and shorter stopovers during spring migration than in autumn. The average flight altitude (1856 ± 781 m above sea level) was correlated with ground elevation but did not differ between the seasons. Conclusions: Our finding indicates strong, season-dependent impact of the Qinghai–Tibet Plateau on shaping passerine migration strategies. We hereby call for more attention to the unexplored central-China flyway to extend our knowledge on the environment-migration interaction among small passerines.
Keywords
Luscinia calliope, animal movement, avian migration, Calliope calliope, GPS, Siberian Rubythroat, songbirds
Taxa
Taxon
Luscinia calliope
Siberian Rubythroat
Sensors
Sensor
GPS
Related Workflows
DOIs of related Publications
BibTex
@misc{001/1_333,
  title = {Data from: Study "Siberian rubythroat tracking from Qinghai, China"},
  author = {Zhao, T and Heim, W and van, Toor, ML and Zhang, G and Liu, Z and Song, G and Hellström, M and Liu, Y and Bensch, S and Wertheim, B and Lei, F and Helm, B},
  year = {2024},
  URL = {http://dx.doi.org/10.5441/001/1.333},
  doi = {doi:10.5441/001/1.333},
  publisher = {Movebank data repository}
}
RIS
TY  - DATA
ID  - doi:10.5441/001/1.333
T1  - Data from: Study "Siberian rubythroat tracking from Qinghai, China"
AU  - Zhao, Tianhao
AU  - Heim, Wieland
AU  - van Toor, Mariëlle L.
AU  - Zhang, Guoming
AU  - Liu, Zongzhuang
AU  - Song, Gang
AU  - Hellström, Magnus
AU  - Liu, Yang
AU  - Bensch, Staffan
AU  - Wertheim, Bregje
AU  - Lei, Fumin
AU  - Helm, Barbara
Y1  - 2024/12/06
KW  - Luscinia calliope
KW  - animal movement
KW  - avian migration
KW  - Calliope calliope
KW  - GPS
KW  - Siberian Rubythroat
KW  - songbirds
KW  - Luscinia calliope
PB  - Movebank data repository
UR  - http://dx.doi.org/10.5441/001/1.333
DO  - doi:10.5441/001/1.333
ER  -
Collections