Data packages
Permanent URI for this collection
Data packages
Browse
Browsing Data packages by Sensor name "Argos Doppler Shift"
Now showing 1 - 20 of 54
Results Per Page
Sort Options
- Data packageData from: A periodic Markov model to formalise animal migration on a network [white-fronted goose data](2018-06-13) Kruckenberg, Helmut; Müskens, Gerhard J.D.M.; Ebbinge, Barwolt S.NOTE: A portion of these same individuals and data are also published with doi 10.5441/001/1.31c2v92f. Regular, long-distance migrations of thousands of animal species have consequences for the ecosystems that they visit, modifying trophic interactions and transporting many non-pathogenic and pathogenic organisms. The spatial structure and dynamic properties of animal migrations and population flyways largely determine those trophic and transport effects, but are yet poorly studied. As a basis, we propose a periodic Markov model on the spatial migration network of breeding, stopover and wintering sites to formally describe the process of animal migration on the population level. From seasonally changing transition rates we derived stable, seasonal densities of animals at the network nodes. We parametrized the model with high-quality GPS and satellite telemetry tracks of white storks (Ciconia ciconia) and greater white-fronted geese (Anser a. albifrons). Topological and network flow properties of the two derived networks conform to migration properties like seasonally changing connectivity and shared, directed movement. Thus, the model realistically describes the migration movement of complete populations and can become an important tool to study the effects of climate and habitat change and pathogen spread on migratory animals. Furthermore, the property of periodically changing transition rates makes it a new type of complex model and we need to understand its dynamic properties.
- Data packageData from: Australia’s east coast humpback whales: satellite tag derived movements on breeding grounds, feeding grounds and along the northern and southern migration.(2023-12-12) Andrews-Goff, Virginia; Gales, Nick; Childerhouse, Simon J.; Laverick, Sarah M.; Polanowski, Andrea M.; Double, Michael C.Background: Satellite tags were deployed on 50 east Australian humpback whales (breeding stock E1) between 2008 and 2010 on their southward migration, northward migration and feeding grounds in order to identify and describe migratory pathways, feeding grounds and possible calving areas. At the time, these movements were not well understood and calving grounds were not clearly identified. To the best of our knowledge, this dataset details all long-term, implantable tag deployments that have occurred to date on breeding stock E1. As such, these data provide researchers, regulators and industry with clear and valuable insights into the spatial and temporal nature of humpback whale movements along the eastern coastline of Australia and into the Southern Ocean. As this population of humpback whales navigates an increasingly complex habitat undergoing various development pressures and anthropogenic disturbances, in addition to climate-mediated changes in their marine environment, this dataset may also provide a valuable baseline. New information: At the time these tracks were generated, these were the first satellite tag deployments intended to deliver long-term, detailed movement information on east Australian (breeding stock E1) humpback whales. The tracking data revealed previously unknown migratory pathways into the Southern Ocean, with 11 individuals tracked to their Antarctic feeding grounds. Once assumed to head directly south on their southern migration, five individuals initially travelled west towards New Zealand. Six tracks detailed the coastal movement of humpback whales migrating south. One tag transmitted a partial southern migration, then ceased transmissions only to begin transmitting eight months later as the animal was migrating north. Northern migration to breeding grounds was detailed for 13 individuals, with four tracks including turning points and partial southern migrations. Another 14 humpback whales were tagged in Antarctica, providing detailed Antarctic feeding ground movements. Broadly speaking, the tracking data revealed a pattern of movement where whales were at their northern limit in July and their southern limit in March. Migration north was most rapid across the months of May and June, whilst migration south was most rapid between November and December. Tagged humpback whales were located on their Antarctic feeding grounds predominantly between January and May and approached their breeding grounds between July and August. Tracking distances ranged from 68 km to 8580 km and 1 to 286 days. To the best of our knowledge, this dataset compiles all of the long-term tag deployments that have occurred to date on breeding stock E1.
- Data packageData from: Breeding and moulting locations and migration patterns of the Atlantic population of Steller's eiders Polysticta stelleri as determined from satellite telemetry(2015-12-11) Petersen, Margaret R.; Douglas, DavidThis study was designed to determine the spring, summer, autumn, and early winter distribution, migration routes, and timing of migration of the Atlantic population of Steller's eiders Polysticta stelleri. Satellite transmitters were implanted in 20 eiders captured in April 2001 at Vadsø, Norway, and their locations were determined from 5 May 2001 to 6 February 2002. Regions where birds concentrated from spring until returning to wintering areas included coastal waters from western Finnmark, Norway, to the eastern Taymyr Peninsula, Russia. Novaya Zemlya, Russia, particularly the Mollera Bay region, was used extensively during spring staging, moult, and autumn staging; regions of the Kola, Kanin, and Gydanskiy peninsulas, Russia, were used extensively during spring and moult migrations. Steller's eiders migrated across the Barents and Kara seas and along the Kara Sea and Kola Peninsula coastal waters to nesting, moulting, and wintering areas. The majority of marked eiders (9 of 15) were flightless in near-shore waters along the west side of Novaya Zemlya. Eiders were also flightless in northern Norway and along the Kanin and at Kola Peninsula coasts. We compare and contrast natural history characteristics of the Atlantic and Pacific populations and discuss evolutionary and ecological factors influencing their distribution.
- Data packageData from: Compensation for wind drift prevails for a shorebird on a long-distance, transoceanic flight(2023-04-19) Linscott, Jennifer A.; Navedo, Juan G.; Clements, Sarah J.; Loghry, Jason P.; Ruiz, Jorge; Ballard, Bart M.; Weegman, Mitch D.; Senner, NathanBackground: Conditions encountered en route can dramatically impact the energy that migratory species spend on movement. Migratory birds often manage energetic costs by adjusting their behavior in relation to wind conditions as they fly. Wind-influenced behaviors can offer insight into the relative importance of risk and resistance during migration, but to date, they have only been studied in a limited subset of avian species and flight types. We add to this understanding by examining in-flight behaviors over a days-long, barrier-crossing flight in a migratory shorebird. Methods: Using satellite tracking devices, we followed 25 Hudsonian godwits (Limosa haemastica) from 2019–2021 as they migrated northward across a largely transoceanic landscape extending > 7000 km from Chiloé Island, Chile to the northern coast of the Gulf of Mexico. We identified in-flight behaviors during this crossing by comparing directions of critical movement vectors and used mixed models to test whether the resulting patterns supported three classical predictions about wind and migration. Results: Contrary to our predictions, compensation did not increase linearly with distance traveled, was not constrained during flight over open ocean, and did not influence where an individual ultimately crossed over the northern coast of the Gulf of Mexico at the end of this flight. Instead, we found a strong preference for full compensation throughout godwit flight paths. Conclusions: Our results indicate that compensation is crucial to godwits, emphasizing the role of risk in shaping migratory behavior and raising questions about the consequences of changing wind regimes for other barrier-crossing aerial migrants.
- Data packageData from: Fall migration routes, timing, and wintering sites of North American ospreys as determined by satellite telemetry(2019-01-03) Martell, Mark S.; Douglas, DavidSatellite telemetry was used to determine fall migratory movements of Ospreys (Pandion haliaetus) breeding in the United States. Study areas were established along the lower Columbia River between Oregon and Washington; in north-central Minnesota; on Shelter Island, New York; and in southern New Jersey. Seventy-four adults (25 males, 49 females) were tracked from 1995 through 1999. Migration routes differed among populations but not by sex. Western Ospreys migrated through California and to a lesser degree other western states and wintered in Mexico (88%), El Salvador (6%), and Honduras (6%) (25.9 deg N to 13.0 deg N and 108.3 deg W to 87.3 deg W). Minnesota Ospreys migrated along three routes: (1) through the Central U.S. and then along the east coast of Mexico, (2) along the Mississippi River Valley, then across the Gulf of Mexico, or (3) through the southeastern U.S., then across the Caribbean. East Coast birds migrated along the eastern seaboard of the U.S., through Florida, and across the Caribbean. Midwestern birds wintered from Mexico south to Bolivia (22.35 deg N to 13.64 deg S, and 91.75 deg W to 61.76 deg W), while East Coast birds wintered from Florida to as far south as Brazil (27.48 deg N to 18.5 deg S and 80.4 deg W to 57.29 deg W). Dates of departure from breeding areas differed significantly between sexes and geographic regions, with females leaving earlier than males. Western birds traveled a shorter distance than either midwestern or eastern Ospreys. Females traveled farther than males from the same population, which resulted in females typically wintering south of males.
- Data packageData from: Fin whale movements in the Gulf of California, Mexico, from satellite telemetry(2019-01-10) Mate, Bruce R.; Palacios, Daniel M.; Follett, Tomas M.Fin whales (Balaenoptera physalus) have a global distribution, but the population inhabiting the Gulf of California (GoC) is thought to be geographically and genetically isolated. However, their distribution and movements are poorly known. The goal of this study was to describe fin whale movements for the first time from 11 Argos satellite tags deployed in the southwest GoC in March 2001. A Bayesian Switching State-Space Model was applied to obtain improved locations and to characterize movement behavior as either “area-restricted searching” (indicative of patch residence, ARS) or “transiting” (indicative of moving between patches). Model performance was assessed with convergence diagnostics and by examining the distribution of the deviance and the behavioral parameters from Markov Chain Monte Carlo models. ARS was the predominant mode behavior 83% of the time during both the cool (December-May) and warm seasons (June-November), with slower travel speeds (mean= 0.84 km/h) than during transiting mode (mean= 3.38 km/h). We suggest ARS mode indicates either foraging activities (year around) or reproductive activities during the winter (cool season). We tagged during the cool season, when the whales were located in the Loreto-La Paz Corridor in the southwestern GoC, close to the shoreline. As the season progressed, individuals moved northward to the Midriff Islands and the upper gulf for the warm season, much farther from shore. One tag lasted long enough to document a whale’s return to Loreto the following cool season. One whale that was originally of undetermined sex, was tagged in the Bay of La Paz and was photographed 10 years later with a calf in the nearby San Jose Channel, suggesting seasonal site fidelity. The tagged whales moved along the western GoC to the upper gulf seasonally and did not transit to the eastern GoC south of the Midriff Islands. No tagged whales left the GoC, providing supporting evidence that these fin whales are a resident population.
- Data packageData from: Flying on their own wings: young and adult cuckoos respond similarly to long-distance displacement during migration(2020-07-01) Thorup, Kasper; Vega, Marta L.; Snell, Katherine R.S.; Lubkovskaia, Regina; Willemoes, Mikkel; Sjöberg, Sissel; Sokolov, Leonid V.; Bulyuk, VictorCommon cuckoos Cuculus canorus are obligate nest parasites yet young birds reach their distant, species-specific wintering grounds without being able to rely on guidance from experienced conspecifics--in fact they never meet their parents. Naïve marine animals use an inherited navigational map during migration but in inexperienced terrestrial animal migrants unequivocal evidence of navigation is lacking. We present satellite tracking data on common cuckoos experimentally displaced 1,800 km eastward from Rybachy to Kazan. After displacement, both young and adult travelled similarly towards the route of non-displaced control birds. The tracking data demonstrate the potential for young common cuckoos to return to the species-specific migration route after displacement, a response so far reported exclusively in experienced birds. Our results indicate that an inherited map allows first-time migrating cuckoos to locate suitable wintering grounds. This is in contrast to previous studies of solitary terrestrial bird migrants but similar to that reported from the marine environment.
- Data packageData from: Foraging behaviour and fuel accumulation of capital breeders during spring migration as derived from a combination of satellite- and ground-based observations(2016-12-12) Chudzińska, Magda E.; Madsen, JesperThe migration strategy of many capital breeders is to garner body stores along the flyway at distinct stopover sites. The rate at which they can fuel is likely to be strongly influenced by a range of factors, such as physiology, food availability, time available for foraging and perceived predation. We analysed the foraging behaviour and fuel accumulation of pink-footed geese, an Arctic capital breeder, at their mid-flyway spring stopover site and evaluated to what extent their behaviour and fuelling were related to physiological and external factors and how it differed from other stopovers along the flyway. We found that fuel accumulation rates of geese at the mid-flyway site were limited by habitat availability rather than by digestive constraints. However, as the time available for foraging increased over the stopover season, geese were able to keep constant fuelling rate. Putting this in perspective, geese increased their daily net energy intake along the flyway corresponding to the increase in time available for foraging. The net energy intake per hour of foraging remained the same. Geese showed differences in their reaction to predators/disturbance between the sites, taking higher risks particularly at the final stopover site. Hence, perceived predation along the flyway may force birds to postpone the final fuel accumulation to the last stopover along the flyway. Flexibility in behaviour appears to be an important trait to ensure fitness in this capital breeder. Our findings are based on a new, improved method for estimating fuel accumulation of animals foraging in heterogeneous landscapes based on data obtained from satellite telemetry and habitat specific intake rates.
- Data packageData from: Great flexibility in autumn movement patterns of European Gadwalls (Anas strepera)(2013-12-18) Gehrold, Andrea; Wikelski, MartinThe annual migration cycle of waterbirds often involves several distinct movement stages, for example within-winter movements or the moult migration during summer, which require a high degree of individual flexibility in migration direction. Here, we investigate whether such flexibility is a common characteristic of waterbird migration by analysing movement behaviour of a dabbling duck, the gadwall Anas strepera, during the little studied, intermediate autumn period. The tracking of individuals via satellite transmitters (n = 7) as well as the ring re-encounter analysis of three European gadwall populations (Germany, England, Russia) revealed that autumn movements were multidirectional. Furthermore, the comparison with winter re-encounters suggested that autumn movements were partly independent of the movements towards subsequently used south to southwestern wintering areas. Some individuals even travelled long distances north- or eastwards. Accordingly, some autumn locations were characterized by a harsh climate, thus serving as temporary staging sites but necessitating further movements when wetlands freeze during winter. The occurrence of such detours or reversals of migration was confirmed by the transmitter data. Inter-individual variability in distance and direction of autumn movements was found for both sexes and age-classes indicating that gadwalls, in general, followed flexible movement strategies. Based on the extent of multidirectional autumn movements, we hypothesize important benefits of such flights and suggest that the analysis of year-round movement patterns of individual animals during their distinct life-history stages is essential to understand how they can successfully reproduce and survive.
- Data packageData from: Intra-African movements of the African Cuckoo Cuculus gularis as revealed by satellite telemetry(2017-12-20) Iwajomo, Soladoye B.; Willemoes, Mikkel; Ottosson, Ulf; Strandberg, Roine; Thorup, KasperDespite many bird species migrating regularly within the African continent, in response to rainfall and breeding opportunities, documented evidence of the spatiotemporal patterns of such movements is scarce. We use satellite telemetry to document the year round movement of an intra-African migrant breeding in the savannah zone of sub-Saharan Africa, the African Cuckoo. After breeding in central Nigeria, the birds migrated to more forested sites in the Adamawa region of Cameroon (n=2) and western Central African Republic (n=1). Departure from the breeding ground coincided with deteriorating environmental conditions whereas arrival at the non-breeding sites matched period of increasing vegetation greenness. Migratory movements generally occurred during dark hours. In total, an average distance of 748 km in 66 days was covered during the post-breeding migration and 744 km in 27 days during return journey with considerable individual variation and with more stopover sites used during post-breeding migration. The diversity of migration routes followed suggests a relatively variable or flexible initial migration strategy, high individual route consistency as well as high fidelity for non-breeding grounds.
- Data packageData from: Is pre-breeding prospecting behaviour affected by snow cover in the irruptive snowy owl? A test using state-space modelling and environmental data annotated via Movebank(2015-02-27) Therrien, Jean-François; Pinaud, David; Gauthier, Gilles; Lecomte, Nicolas; Bildstein, Keith L.; Bety, JoëlBackground: Tracking individual animals using satellite telemetry has improved our understanding of animal movements considerably. Nonetheless, thorough statistical treatment of Argos datasets is often jeopardized by their coarse temporal resolution. State-space modelling can circumvent some of the inherent limitations of Argos datasets, such as the limited temporal resolution of locations and the lack of information pertaining to the behavioural state of the tracked individuals at each location. We coupled state-space modelling with environmental characterisation of modelled locations on a 3-year Argos dataset of 9 breeding snowy owls to assess whether searching behaviour for breeding sites was affected by snow cover and depth in an arctic predator that shows a lack of breeding site fidelity. Results: The state-space modelling approach allowed the discrimination of two behavioural states (searching and moving) during pre-breeding movements. Tracked snowy owls constantly switched from moving to searching behaviour during pre-breeding movements from mid-March to early June. Searching events were more likely where snow cover and depth was low. This suggests that snowy owls adapt their searching effort to environmental conditions encountered along their path. Conclusions: This modelling technique increases our understanding of movement ecology and behavioural decisions of individual animals both locally and globally according to environmental variables.
- Data packageData from: Juvenile emperor penguin range calls for extended conservation measures in the Southern Ocean(2022-08-30) Houstin, Aymeric; Zitterbart, Daniel P.; Heerah, Karine; Eisen, Olaf; Planas-Bielsa, Victor; Fabry, Ben; Le Bohec, CélineTo protect the unique and rich biodiversity of the Southern Ocean, conservation measures such as marine protected areas (MPAs) have been implemented. Currently, the establishment of several additional protection zones is being considered based on the known habitat distributions of key species of the ecosystems including emperor penguins and other marine top predators. However, the distribution of such species at sea is often insufficiently sampled. Specifically, current distribution models focus on the habitat range of adult animals and neglect that immatures and juveniles can inhabit different areas. By tracking eight juvenile emperor penguins in the Weddell Sea over one year and performing a meta-analysis including previously known data from other colonies, we show that conservation efforts in the Southern Ocean are insufficient for protecting this highly mobile species, and particularly its juveniles. We find that juveniles spend ~90% of their time outside the boundaries of proposed and existing MPAs, and that their distribution extends beyond (> 1500 km) the species’ extent of occurrence as defined by the International Union for Conservation of Nature. Our data exemplify that strategic conservation plans for the Emperor penguin and other long-lived ecologically important species should consider the dynamic habitat range of all age classes.
- Data packageData from: Latitudinal cline in the ratio of foraging dichotomy in the North Pacific population of loggerhead turtles revealed a priority conservation area(2022-12-22) Okuyama, Junichi; Watabe, Akemi; Takuma, Shunichi; Tanaka, Kentaro; Shirai, Kotaro; Murakami-Sugihara, Naoko; Arita, Mamiko; Fujita, Kento; Nishizawa, Hideaki; Narazaki, Tomoko; Yamashita, Yoshiya; Kameda, KazunariAim: Quantifying the importance of habitat areas for conservation of highly migratory marine species with complex life histories can be challenging. For example loggerhead turtles (Caretta caretta) nesting in Japan forage both oceanically and neritically after their reproductive period. Here, we aimed to quantify the proportions of turtles using these two contrasting habitats (foraging dichotomy) to suggest priority conservation areas. Location: North Pacific Ocean. Methods: We examined the occurrence of foraging dichotomy at three nesting sites (Ishigaki, Okinoerabu Islands and Ichinomiya) based on stable isotope analysis of the egg yolks for 82 turtles and satellite tracking of post-nesting migration for 12 turtles. Moreover, we used the data of three other sites from previous studies (Yakushima Island, Minabe and Omaezaki). Results: Two neritic foraging grounds (East China Sea and the coastal area of the Japanese archipelago), and an oceanic ground (North Pacific Ocean) were identified. We found a latitudinal cline with respect to the occurrence of foraging dichotomy; >84% of the females nesting at southern sites (Ishigaki and Okinoerabu Islands), 73% at middle sites (Yakushima Island and Minabe) and <46% at northern sites (Omaezaki and Ichinomiya) were neritic foragers; the proportion of oceanic foragers increased at northern sites. Based on the annual number of nests in the entire nesting region of Japan, satellite tracking and the latitudinal cline of foraging dichotomy, we estimated that 70% and 9% of annual nesting females in Japan utilize the neritic foraging habitat in the East China Sea and the coastal area of the Japanese archipelago, respectively, and that and 22% utilize the oceanic habitat of the North Pacific Ocean. Main conclusions: The East China Sea represents a critical foraging habitat for the North Pacific populations of endangered loggerhead sea turtles. Our findings emphasize the need for international management to ensure their protection.
- Data packageData from: Migration phenology and patterns of American woodcock in central North America derived using satellite telemetry(2021-03-18) Moore, Joseph D.; Andersen, David E.; Cooper, Thomas R.; Duguay, Jeffrey P.; Oldenburger, Shaun L.; Stewart, C. Alan; Krementz, David G.American woodcock Scolopax minor (hereafter woodcock) migration ecology is poorly understood, but has implications for population ecology and management, especially related to harvest. To describe woodcock migration patterns and phenology, we captured and equipped 73 woodcock with satellite tracking devices in the Central Management Region (analogous to the Mississippi Flyway) of North America and documented migration paths of 60 individual woodcock and 87 autumn or spring woodcock migrations during 2014–2016. Woodcock migration at the scale of the Central Management Region was more synchronous in spring than in autumn, but unlike most other migratory birds, average duration of autumn migration (31 days) was shorter than duration of spring migration (53 days). This difference in migration duration resulted from woodcock making more close-together migratory stopovers during spring migration, not because woodcock had individual stopovers of longer duration. During autumn migration, the number of days, the number of stopovers, migration end date and net migration displacement were negatively related to initiation date and rate of migration, and the number of stopovers and the net migration displacement were negatively related with migration end date. Spring migration duration, end date, the number of stopovers and net migration displacement were negatively related to migration rate and initiation date was positively related to migration rate, suggesting that woodcock that initiated spring migration later had faster migration rates. Juvenile female woodcock began spring migration later than adult female woodcock. Our results provide a basis for comparing current harvest seasons with presence of migrating woodcock during autumn and provide insight into differential harvest of migratory versus local woodcock on breeding areas.
- Data packageData from: Migration routes and strategies of Grey Plovers (Pluvialis squatarola) on the East Atlantic Flyway as revealed by satellite tracking(2019-08-09) Exo, Klaus-Michael; Hillig, Franziska; Bairlein, FranzBackground: While the general migration routes of most waders are known, details concerning connectivity between breeding grounds, stopover sites and wintering grounds are often lacking. Such information is critical from the conservation perspective and necessary for understanding the annual cycle. Studies are especially needed to identify key stopover sites in remote regions. Using satellite transmitters, we traced spring and autumn migration routes and connectivity of Grey Plovers on the East Atlantic Flyway. Our findings also revealed the timing, flight speed, and duration of migrations. Methods: We used ARGOS satellite transmitters to track migration routes of 11 Grey Plovers that were captured at the German Wadden Sea where they had stopped during migration. Birds were monitored for up to 3 years, 2011‒2014. Results: Monitoring signals indicated breeding grounds in the Taimyr and Yamal regions; important staging sites on the coasts of the southern Pechora Sea and the Kara Sea; and wintering areas that ranged from NW- Ireland to Guinea Bissau. The average distance traveled from wintering grounds to breeding grounds was 5534 km. Migration duration varied between 42 and 152 days; during this period birds spent about 95% of the time at staging sites. In spring most plovers crossed inland Eastern Europe, whereas in autumn most followed the coastline. Almost all of the birds departed during favorable wind conditions within just 4 days (27‒30 May) on northward migration from the Wadden Sea. In spring birds migrated significantly faster between the Wadden Sea and the Arctic than on return migration in autumn (12 vs. 37 days), with shorter stopovers during the northward passage. Conclusions: Our study shows that satellite tags can shed considerable light on migration strategies by revealing the use of different regions during the annual cycle and by providing detailed quantitative data on population connectivity and migration timing.
- Data packageData from: Migratory connectivity and population specific migration routes in a long-distance migratory bird(2013-12-17) Trierweiler, Christiane; Klaassen, Raymond H.G.; Drent, Rudi H.; Exo, Klaus-Michael; Komdeur, Jan; Bairlein, Franz; Koks, Ben J.Knowledge about migratory connectivity, the degree to which individuals from the same breeding site migrate to the same wintering site, is essential to understand processes affecting populations of migrants throughout the annual cycle. Here, we study the migration system of a long-distance migratory bird, the Montagu's harrier Circus pygargus, by tracking individuals from different breeding populations throughout northern Europe. We identified three main migration routes towards wintering areas in sub-Saharan Africa. Wintering areas and migration routes of different breeding populations overlapped, a pattern best described by ‘weak (diffuse) connectivity’. Migratory performance, i.e. timing, duration, distance and speed of migration, was surprisingly similar for the three routes despite differences in habitat characteristics. This study provides, to our knowledge, a first comprehensive overview of the migration system of a Palaearctic-African long-distance migrant. We emphasize the importance of spatial scale (e.g. distances between breeding populations) in defining patterns of connectivity and suggest that knowledge about fundamental aspects determining distribution patterns, such as the among-individual variation in mean migration directions, is required to ultimately understand migratory connectivity. Furthermore, we stress that for conservation purposes it is pivotal to consider wintering areas as well as migration routes and in particular stopover sites.
- Data packageData from: Movement of long-tailed ducks marked on the Yukon-Kuskokwim Delta, Alaska 1998-2000 (data from Petersen et al. 2003)(2016-04-01) Petersen, Margaret R.; Douglas, DavidThe primary objectives of this study were to identify moulting areas of adult female Breeding populations of Long-tailed Ducks Clangula hyemalis have declined in western Alaska, particularly on the Yukon-Kuskokwim (Y-K) Delta, and the species is currently considered a species of particular concern by the U.S. Fish & Wildlife Service in Alaska. Potential factors that may have contributed to this decline that occurred away from the breeding grounds could not be considered since moulting and wintering areas for this population were unknown. A study was conducted in 1998 and 1999 to locate the moulting and wintering areas of the Y-K Delta breeding population. VHF and satellite transmitters were deployed to identify areas used by moulting birds. Based on the locations identified by satellite telemetry, aerial surveys were flown to locate birds marked with VHF transmitters, then low-level aerial surveys were designed and conducted to determine the number of birds using these and adjacent areas. Moulting locations of 54 marked female Long-tailed Ducks were identified: 13 marked females were found in wetlands and large lakes on the Y-K Delta, 11 in coastal lagoons at St Lawrence Island, Alaska, and two along the coast of the Chukotka Peninsula, Russia. A autumn staging area was identified along the east coast of the Chukotka Peninsula which was used by seven of 10 birds with satellite transmitters providing locations during that period. Birds wintered in coastal waters of the North Pacific Ocean north of 50°N and between 150°E and 130°W. The wide distribution of birds in winter suggests little probability of a single factor in winter contributing to the decline.
- Data packageData from: New York State bald eagle report 2010(2018-12-21) Nye, Peter; Hewitt, Glenn; Swenson, Theresa; Kays, RolandSatellite telemetry collected between 1992 and 2010 by the New York State Department of Environmental Conservation to document the migratory pathways of raptors and owls in NY State.
- Data packageData from: Oceanic navigation in Cory’s shearwaters—evidence for a crucial role of olfactory cues for homing after displacement(2013-07-16) Gagliardo, Anna; Bried, Joël; Lambardi, Paolo; Luschi, Paolo; Wikelski, Martin; Bonadonna, FrancescoPelagic birds, which wander in the open sea most of the year and often nest on small remote oceanic islands, are able to pinpoint their breeding colony even within an apparently featureless environment, such as the open ocean. The mechanisms underlying their surprising navigational performance are still unknown. In order to investigate the nature of the cues exploited for oceanic navigation, Cory's shearwaters, Calonectris borealis, nesting in the Azores were displaced and released in open ocean at about 800 km from their colony, after being subjected to sensory manipulation. While magnetically disturbed shearwaters showed unaltered navigational performance and behaved similarly to unmanipulated control birds, the shearwaters deprived of their sense of smell were dramatically impaired in orientation and homing. Our data show that seabirds use olfactory cues not only to find their food but also to navigate over vast distances in the ocean.
- Data packageData from: Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea(2015-10-27) Pollonara, Enrica; Luschi, Paolo; Guilford, Tim; Wikelski, Martin; Bonadonna, Francesco; Gagliardo, AnnaPelagic seabirds wander the open oceans then return accurately to their habitual nest-sites. We investigated the effects of sensory manipulation on oceanic navigation in Scopoli’s shearwaters (Calonectris diomedea) breeding at Pianosa island (Italy), by displacing them 400 km from their colony and tracking them. A recent experiment on Atlantic shearwaters (Cory’s shearwater, Calonectris borealis) breeding in the Azores indicated a crucial role of olfaction over the open ocean, but left open the question of whether birds might navigate by topographical landmark cues when available. Our experiment was conducted in the Mediterranean sea, where the availability of topographical cues may provide an alternative navigational mechanism for homing. Magnetically disturbed shearwaters and control birds oriented homeward even when the coast was not visible and rapidly homed. Anosmic shearwaters oriented in a direction significantly different from the home direction when in open sea. After having approached a coastline their flight path changed from convoluted to homeward oriented, so that most of them eventually reached home. Beside confirming that magnetic cues appear unimportant for oceanic navigation by seabirds, our results support the crucial role of olfactory cues for birds’ navigation and reveal that anosmic shearwaters are able to home eventually by following coastal features.
- «
- 1 (current)
- 2
- 3
- »