Browsing by Author "Liechti, Felix"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- Data packageData from: Flight behaviour of Red Kites within their breeding area in relation to local weather variables: conclusions with regard to wind turbine collision mitigation(2024-08-05) Aschwanden, Janine; Stark, Herbert; Liechti, Felix1. Birds and bats are prone to collisions with wind turbines. To reduce the number of bat collisions, weather variables are commonly used to shut down wind turbines when a certain constellation of weather variables occurs. Such a general approach might also be interesting to mitigate raptor collisions. Studies on the relationship between flight behaviour and weather variables are needed. 2. To investigate the flight behaviour of raptors within their breeding area in relation to local weather variables, we used high resolution data of flight tracks of Red Kites collected on a wind energy test site (Germany). Birds were tracked with a Laser Range Finder (LRF) or with GPS transmitters. Weather variables were continuously registered on site. We used generalized linear mixed models to analyse the influence of weather variables and of the measurement method on different flight parameters. Furthermore, we investigated the probability of flying within a virtual rotor height range defined by three hub heights (84 m, 94 m, 140 m, diameter: 112 m). 3. The median flight altitude measured by LRF (52.5 m, 95% CI: 44.9–61.0, N=2,511) was on average 25 m higher than the corrected one resulting from GPS (27.8 m, 95% CI: 24.7–31.2, N=6,792). Flight speed also differed between methods (GPS: 29.2 km/h, 95% CI: 28.2–30.3 km/h; LRF: 25.1 km/h, 95% CI: 24.0–26.3 km/h). The effects of the weather variables were weak. Birds tended to fly less and lower during wet (humid, rainy, or foggy) than dry weather, and lower during strong than weak winds. Probabilities of flying within a height range of virtual rotors increased with decreasing hub height, and hence ground clearance. 4. Synthesis and applications: Flight behaviour was highly variable. Flights occurred during all weather conditions at different altitudes throughout the day over the entire season. Further research into the relationship between flight behaviour, weather variables, collisions, and other factors is needed as a basis for developing shutdown regimes generally suitable for raptors. The mean flight altitude and speed differed between the measurement methods. Any values resulting from studies should be interpreted in the context of the method.
- Data packageData from: Locally adapted migration strategies: Comparing routes and timing of northern wheatears from alpine and lowland European populations [Austria](2022-06-17) Meier, Christoph M.; Buchmann, Martin; Liechti, FelixThe northern wheatear Oenanthe oenanthe has an almost circumpolar breeding distribution in the northern hemisphere, but all populations migrate to sub-Saharan Africa in winter. Currently, tracking data suggest two main access routes to the northern continents via the Middle East and the Iberian Peninsula. These routes would require detours for birds breeding in the European Alps. Our aim was to map the migration routes and determine annual schedules for birds breeding in Switzerland and Austria, using light level geolocators. We compared their migration patterns with birds from a lowland breeding population in Germany. Birds from the Alps cross the Mediterranean Sea directly heading straight to their non-breeding sites. In contrast, birds from Germany travelled further west via the Iberian Peninsula. While the German population initiated autumn migration relatively early, arrival on the wintering sites was nearly synchronous across the three populations. During spring migration, German birds arrived earlier at their breeding grounds than birds from the Alps. A comparison with the literature indicated that the breeding populations in the Alps use their own route and are among the latest to arrive in spring, showing resemblance to the phenology of Arctic breeding populations. Our results indicate that the annual cycle of Alps-breeding wheatears is influenced primarily by breeding ground conditions, and not solely by migration distance.
- Data packageData from: Locally adapted migration strategies: Comparing routes and timing of northern wheatears from alpine and lowland European populations [Germany](2022-06-17) Meier, Christoph M.; Buchmann, Martin; Liechti, FelixThe northern wheatear Oenanthe oenanthe has an almost circumpolar breeding distribution in the northern hemisphere, but all populations migrate to sub-Saharan Africa in winter. Currently, tracking data suggest two main access routes to the northern continents via the Middle East and the Iberian Peninsula. These routes would require detours for birds breeding in the European Alps. Our aim was to map the migration routes and determine annual schedules for birds breeding in Switzerland and Austria, using light level geolocators. We compared their migration patterns with birds from a lowland breeding population in Germany. Birds from the Alps cross the Mediterranean Sea directly heading straight to their non-breeding sites. In contrast, birds from Germany travelled further west via the Iberian Peninsula. While the German population initiated autumn migration relatively early, arrival on the wintering sites was nearly synchronous across the three populations. During spring migration, German birds arrived earlier at their breeding grounds than birds from the Alps. A comparison with the literature indicated that the breeding populations in the Alps use their own route and are among the latest to arrive in spring, showing resemblance to the phenology of Arctic breeding populations. Our results indicate that the annual cycle of Alps-breeding wheatears is influenced primarily by breeding ground conditions, and not solely by migration distance.
- Data packageData from: Locally adapted migration strategies: Comparing routes and timing of northern wheatears from alpine and lowland European populations [Switzerland](2022-06-17) Meier, Christoph M.; Rime, Yann; Liechti, FelixThe northern wheatear Oenanthe oenanthe has an almost circumpolar breeding distribution in the northern hemisphere, but all populations migrate to sub-Saharan Africa in winter. Currently, tracking data suggest two main access routes to the northern continents via the Middle East and the Iberian Peninsula. These routes would require detours for birds breeding in the European Alps. Our aim was to map the migration routes and determine annual schedules for birds breeding in Switzerland and Austria, using light level geolocators. We compared their migration patterns with birds from a lowland breeding population in Germany. Birds from the Alps cross the Mediterranean Sea directly heading straight to their non-breeding sites. In contrast, birds from Germany travelled further west via the Iberian Peninsula. While the German population initiated autumn migration relatively early, arrival on the wintering sites was nearly synchronous across the three populations. During spring migration, German birds arrived earlier at their breeding grounds than birds from the Alps. A comparison with the literature indicated that the breeding populations in the Alps use their own route and are among the latest to arrive in spring, showing resemblance to the phenology of Arctic breeding populations. Our results indicate that the annual cycle of Alps-breeding wheatears is influenced primarily by breeding ground conditions, and not solely by migration distance.
- Data packageData from: Study "Bulgaria Sofia - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Peev, Strahil G.; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre- and post-breeding migration between individuals from four different populations of alpine swifts (Tachymarptis melba) along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
- Data packageData from: Study "Spain Tarragona - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Aymí, Raül; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
- Data packageData from: Study "Switzerland Baden - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
- Data packageData from: Study "Switzerland Biel - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
- Data packageData from: Study "Switzerland Lausanne - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
- Data packageData from: Study "Switzerland Lenzburg - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
- Data packageData from: Study "Switzerland Luzern - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
- Data packageData from: Study "Switzerland Solothurn - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.
- Data packageData from: Study "Turkey Pirasali - Long term study on migratory movement of Alpine swifts (Apus melba)"(2020-11-26) Meier, Christoph M.; Karaardıç, Hakan; Liechti, FelixFor migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre‐ and post‐breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.