Browsing by Author "Harel, Roi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Data packageData from: Moving beyond curve-fitting: using complementary data to assess alternative explanations for long movements of three vulture species(2015-02-03) Spiegel, Orr M.; Harel, Roi; Centeno-Cuadros, Alejandro; Hatzofe, Ohad; Getz, Wayne M.; Nathan, RanAnimal movements exhibit an almost universal pattern of fat-tailed step-size distributions, mixing short and very long steps. The Lévy-flight foraging hypothesis (LFFH) suggests a single optimal food search strategy to explain this pattern, yet mixed movement distributions are biologically more plausible and often convincingly fit movement data. To confront alternative explanations for these patterns, we tracked vultures of three species in two very different ecosystems using high-resolution GPS/accelerometer tags accompanied by behavioral, genetic and morphological data. The Lévy distribution fitted the datasets reasonably well, matching expectations based on their sparsely distributed food resources; yet, the fit of mixed models was considerably better, suggesting distinct movement modes operating at three different scales. Specifically, long-range forays (LRFs)—rare, short-term, large-scale circular journeys that greatly exceed the typical foraging range and contribute to the tail-fatness of the movement distribution in all three species – do not match an optimal foraging strategy suggested by the LFFH. We also found no support for preferred weather conditions or population genetic structure as alternative explanations, so the hypothesis that LRFs represent failed breeding dispersal attempts to find mates remains our most plausible explanation at this time. We conclude that inference about the mechanisms underlying animal movements should be confronted with complementary data, and suggest that mixed behavioral-modes likely explain commonly observed fat-tailed movement distributions.
- Data packageData from: The characteristic time scale of perceived information for decision-making: departure from thermal columns in soaring birds(2018-05-25) Harel, Roi; Nathan, Ran(1) Animals are often required to make decisions about their use of current resources while minimising travel costs and risks due to uncertainty about the forthcoming resources. Passive soaring birds utilise warm rising‐air columns (thermals) to climb up and obtain potential energy for flying across large areas. However, the utilisation of such inconsistent natural resources may be challenging for soaring‐gliding birds and involve a set of decisions to maintain efficient flight. (2) To assess which temporal scales of previous experience with environmental inputs best predicted thermal‐climbing departure decisions of soaring birds, we used movement data from Eurasian griffon vultures (Gyps fulvus) tracked by GPS transmitters. We applied Cox proportional hazard regression and a model selection approach to identify thermal‐climbing departure decisions and to compare a range of temporal scales. (3) Our findings support the use of current and recent (short‐term; last 20 minutes) experiences, compared to longer term, past experiences, in predicting the time until departure from thermals. The models supported decision rules that integrated information originating from different temporal scales, implying a tendency to depart from a thermal later when the current climb rate was stronger than experienced recently and vice‐versa. Additionally, climb rates in thermals revealed significant autocorrelation over short time scales (shorter than 30 minutes). (4) The correspondence between thermals’ characteristics and the factors that best predicted thermal‐climbing departure decisions presumably reflect optimal decisions individuals make to handle their dynamic environment and to reduce movement‐related costs of such a basic activity for soaring‐gliding birds.