Browsing by Author "Glazov, Peter"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Data packageData from: Flyway connectivity and exchange primarily driven by moult migration in geese [North Sea population](2019-02-06) Kölzsch, Andrea; Müskens, Gerhard J.D.M.; Moonen, Sander; Kruckenberg, Helmut; Glazov, Peter; Wikelski, MartinBackground: For the conservation and management of migratory species that strongly decrease or increase due to anthropological impacts, a clear delineation of populations and quantification of possible mixing (migratory connectivity) is crucial. Usually, population exchange in migratory species is only studied in breeding or wintering sites, but we considered the whole annual cycle in order to determine important stages and sites for population mixing in an Arctic migrant. Methods: We used 91 high resolution GPS tracks of Western Palearctic greater white-fronted geese (Anser A. albifrons) from the North Sea and Pannonic populations to extract details of where and when populations overlapped and exchange was possible. Overlap areas were calculated as dynamic Brownian bridges of stopover, nest and moulting sites. Results: Utilisation areas of the two populations overlapped only somewhat during spring and autumn migration stopovers, but much during moult. During this stage, non-breeders and failed breeders of the North Sea population intermixed with geese from the Pannonic population in the Pyasina delta on Taimyr peninsula. The timing of use of overlap areas was highly consistent between populations, making exchange possible. Two of our tracked geese switched from the North Sea population flyway to the Pannonic flyway during moult on Taimyr peninsula or early during the subsequent autumn migration. Because we could follow one of them during the next year, where it stayed in the Pannonic flyway, we suggest that the exchange was long-term or permanent. Conclusions: We have identified long-distance moult migration of failed or non-breeders as a key phenomenon creating overlap between two flyway populations of geese. This supports the notion of previously suggested population exchange and migratory connectivity, but outside of classically suggested wintering or breeding sites. Our results call for consideration of moult migration and population exchange in conservation and management of our greater white-fronted geese as well as other waterfowl populations.
- Data packageData from: Goose parents lead migration V(2020-01-22) Kölzsch, Andrea; Müskens, Gerhard J.D.M.; Glazov, Peter; Kruckenberg, Helmut; Wikelski, MartinMany migratory animals travel in large social groups. Large, avian migrants that fly in V‐formations were proposed do so for energy saving by the use of up‐wash by following individuals and regularly change leadership. As groups have been rather homogeneous in previous work, we aimed to explore leadership and its flight mechanics consequences in an extremely heterogeneous case of social migration, namely in spring migration of goose families. In families the experience of group members differs strongly and inclusive fitness may be important. We successfully collected overlapping spring migration tracking data of a complete family of greater white‐fronted geese (Anser a. albifrons) and extracted leadership, flapping frequency and wind conditions in flight. Our data revealed V‐formations where one parent was flying in front at all times. Although the father led the family group most of the time, he did not flap at higher frequency while doing so. In contrast, the mother flapped faster when leading, possibly because she experienced less supportive wind conditions than when the father led. We argue that in heterogeneous, social groups leadership might be fixed and not costly if supportive environmental conditions like wind can be used.
- Data packageData from: Longer days enable higher diurnal activity for migratory birds [greater white-fronted geese](2021-03-24) Kölzsch, Andrea; Müskens, Gerhard J.D.M.; Moonen, Sander; Kruckenberg, Helmut; Glazov, Peter; Wikelski, Martin(1) Seasonal geophysical cycles strongly influence the activity of life on Earth because they affect environmental conditions like temperature, precipitation, and daylength. An increase in daylight availability during summer is especially enhanced when animals migrate along a latitudinal gradient. Yet, the question of how daylength (i.e. daylight availability) influences the activity patterns of long‐distance, latitudinal migrants is still unclear. (2) Here, we ask whether migration provides benefits to long‐distance migrants by enabling them to increase their diurnal movement activities due to an increase in daylight availability. To answer this question, we tested whether four vastly different species of long‐distance migratory birds--two arctic migrants and two mid‐latitude migrants--can capitalise on day length changes by adjusting their daily activity. (3) We quantified the relationship between daily activity (measured using accelerometer data) and day length, and estimated each species' daily activity patterns. In addition, we evaluated the role of day length as an ultimate driver of bird migration. (4) All four species exhibited longer activity periods during days with more daylight hours, showing a strong positive relationship between total daily activity and day length. The slope of this relationship varied between the different species, with activity increasing 1.5‐fold on average when migrating from wintering to breeding grounds. Underlying mechanisms of these relationships reveal two distinct patterns of daily activity. Flying foragers showed increasing activity patterns, i.e. their daytime activities rose uniformly up to solar noon and decreased until dusk, thereby exhibiting a season‐specific activity slope. In contrast, ground foragers showed a constant activity pattern, whereby they immediately increased their activity to a certain level and maintained this level throughout the day. (5) Our study reveals that long days allow birds to prolong their activity and increase their total daily activity. These findings highlight that daylight availability could be an additional ultimate cause of bird migration and act as a selective agent for the evolution of migration.
- Data packageData from: Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure(2016-02-25) Kölzsch, Andrea; Kruckenberg, Helmut; Glazov, Peter; Müskens, Gerhard J.D.M.; Wikelski, MartinAccording to migration theory and several empirical studies, long-distance migrants are more time-limited during spring migration and should therefore migrate faster in spring than in autumn. Competition for the best breeding sites is supposed to be the main driver, but timing of migration is often also influenced by environmental factors such as food availability and wind conditions. Using GPS tags, we tracked 65 greater white-fronted geese Anser albifrons migrating between western Europe and the Russian Arctic during spring and autumn migration over six different years. Contrary to theory, our birds took considerably longer for spring migration (83 days) than autumn migration (42 days). This difference in duration was mainly determined by time spent at stopovers. Timing and space use during migration suggest that the birds were using different strategies in the two seasons: In spring they spread out in a wide front to acquire extra energy stores in many successive stopover sites (to fuel capital breeding), which is in accordance with previous results that white-fronted geese follow the green wave of spring growth. In autumn they filled up their stores close to the breeding grounds and waited for supportive wind conditions to quickly move to their wintering grounds. Selection for supportive winds was stronger in autumn, when general wind conditions were less favourable than in spring, leading to similar flight speeds in the two seasons. In combination with less stopover time in autumn this led to faster autumn than spring migration. White-fronted geese thus differ from theory that spring migration is faster than autumn migration. We expect our findings of different decision rules between the two migratory seasons to apply more generally, in particular in large birds in which capital breeding is common, and in birds that meet other environmental conditions along their migration route in autumn than in spring.