Browsing by Author "Garde, Baptiste"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Data packageData from: Thermal soaring in tropicbirds suggests that diverse seabirds may use this strategy to reduce flight costs(2023-09-03) Garde, Baptiste; Fell, Adam; Krishnan, Krishnamoorthy; Jones, Carl G.; Gunner, Richard; Tatayah, Vikash; Cole, Nik C.; Lempidakis, Emmanouil; Shepard, Emily L.C.Thermal soaring can offer substantial reductions in flight cost but it is often assumed to be confined to a relatively narrow group of fliers (those with low wing loading relative to their body mass). Using high-frequency movement data, including magnetometry and GPS, we identified thermal soaring in a seabird previously thought to use only flapping flight; red-tailed tropicbirds (Phaethon rubricauda). We tracked 55 individuals breeding on Round Island, Mauritius, and examined the environmental conditions that predicted thermal soaring in 76 trips (ranging from 0.8 to 43 h, mean= 5.9 h). Tropicbirds used thermal soaring and gliding flight for 13% of their flight time on average (range 0 - 34%), in association with both commuting and prey-searching/ pursuits. The use of thermal soaring showed strong variation between trips, but birds were more likely to soar when flying with tailwinds. This enables them to reduce their flight costs without a substantial increase in trip duration, which is pertinent in the breeding season when they are constrained by time and the need to return to a central place. Birds may therefore be able to increase the amount of thermal soaring outside the breeding season. Overall, we suggest that thermal soaring may be more widespread than previously thought, given that birds without specific morphological adaptations for this behaviour can soar for extended periods, and the bio-logging approaches best-placed to detect thermal soaring (high-frequency GPS/ magnetometry) tend to be used in the breeding season, when thermal soaring may be less likely.
- Data packageData from: Turbulence causes kinematic and behavioural adjustments in a flapping flier(2024-02-20) Lempidakis, Emmanouil; Ross, Andrew N.; Quetting, Michael; Krishnan, Krishnamoorthy; Garde, Baptiste; Wikelski, Martin; Shepard, Emily L.C.Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort, and track properties of homing pigeons (Columba livia), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same. Mean kinematic responses to turbulence may therefore enable birds to increase their stability without a reduction in propulsive efficiency. Nonetheless, the most marked response to turbulence was an increase in the variability of wingbeat frequency and amplitude. These stroke-to-stroke changes in kinematics provide instantaneous compensation for turbulence. They will also increase flight costs. Yet pigeons only made small adjustments to their flight altitude, likely resulting in little change in exposure to strong convective turbulence. Responses to turbulence were therefore distinct from responses to wind, with the costs of high turbulence being levied through an increase in the variability of their kinematics and airspeed. This highlights the value of investigating the variability in flight parameters in free-living animals.