Browsing by Author "Fifield, David A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Data packageData from: Behavioural flexibility in an Arctic seabird using two distinct marine habitats to survive the energetic constraints of winter(2022-11-08) Patterson, Allison; Gilchrist, H. Grant; Robertson, Gregory J.; Hedd, April; Fifield, David A.; Elliott, Kyle H.Background: Homeothermic marine animals in Polar Regions face an energetic bottleneck in winter. The challenges of short days and cold temperatures are exacerbated for flying seabirds with small body size and limited fat stores. We use biologging approaches to examine how habitat, weather, and moon illumination influence behaviour and energetics of a marine bird species, thick-billed murres (Uria lomvia). Methods: We used temperature-depth-light recorders to examine strategies murres use to survive winter in the Northwest Atlantic, where contrasting currents create two distinct marine habitats: cold (−0.1 ± 1.2 °C), shallower water along the Labrador Shelf and warmer (3.1 ± 0.3 °C), deep water in the Labrador Basin. Results: In the cold shelf water, murres used a high-energy strategy, with more flying and less diving each day, resulting in high daily energy expenditure and also high apparent energy intake; this strategy was most evident in early winter when day lengths were shortest. By contrast, murres in warmer basin water employed a low-energy strategy, with less time flying and more time diving under low light conditions (nautical twilight and night). In warmer basin water, murres increased diving at night when the moon was more illuminated, likely taking advantage of diel vertically migrating prey. In warmer basin water, murres dove more at night and foraging efficiency increased under negative North Atlantic Oscillation (calmer ocean conditions). Conclusions: The proximity of two distinct marine habitats in this region allows individuals from a single species to use dual (low-energy/high-energy) strategies to overcome winter energy bottlenecks.
- Data packageData from: Study "Herring Gulls (Larus Argentatus); Fifield; Witless Bay, Canada"(2020-06-17) Fifield, David A.; Ronconi, Robert A.; Robertson, Gregory J.Background: Recent studies have proposed that birds migrating short distances migrate at an overall slower pace, minimizing energy expenditure, while birds migrating long distances minimize time spent on migration to cope with seasonal changes in environmental conditions. Methods: We evaluated variability in the migration strategies of Herring Gulls (Larus argentatus), a generalist species with flexible foraging and flight behaviour. We tracked one population of long distance migrants and three populations of short distance migrants, and compared the directness of their migration routes, their overall migration speed, their travel speed, and their use of stopovers. Results: Our research revealed that Herring Gulls breeding in the eastern Arctic migrate long distances to spend the winter in the Gulf of Mexico, traveling more than four times farther than gulls from Atlantic Canada during autumn migration. While all populations used indirect routes, the long distance migrants were the least direct. We found that regardless of the distance the population traveled, Herring Gulls migrated at a slower overall migration speed than predicted by Optimal Migration Theory, but the long distance migrants had higher speeds on travel days. While long distance migrants used more stopover days overall, relative to the distance travelled all four populations used a similar number of stopover days. Conclusions: When taken in context with other studies, we expect that the migration strategies of flexible generalist species like Herring Gulls may be more influenced by habitat and food resources than migration distance.
- Data packageThick-billed murre Patterson Coats meps13890_part-reference-data(2022-11-08) Patterson, Allison; Gilchrist, H. Grant; Robertson, Gregory J.; Hedd, April; Fifield, David A.; Elliott, Kyle H.Background: Homeothermic marine animals in Polar Regions face an energetic bottleneck in winter. The challenges of short days and cold temperatures are exacerbated for flying seabirds with small body size and limited fat stores. We use biologging approaches to examine how habitat, weather, and moon illumination influence behaviour and energetics of a marine bird species, thick-billed murres (Uria lomvia). Methods: We used temperature-depth-light recorders to examine strategies murres use to survive winter in the Northwest Atlantic, where contrasting currents create two distinct marine habitats: cold (−0.1 ± 1.2 °C), shallower water along the Labrador Shelf and warmer (3.1 ± 0.3 °C), deep water in the Labrador Basin. Results: In the cold shelf water, murres used a high-energy strategy, with more flying and less diving each day, resulting in high daily energy expenditure and also high apparent energy intake; this strategy was most evident in early winter when day lengths were shortest. By contrast, murres in warmer basin water employed a low-energy strategy, with less time flying and more time diving under low light conditions (nautical twilight and night). In warmer basin water, murres increased diving at night when the moon was more illuminated, likely taking advantage of diel vertically migrating prey. In warmer basin water, murres dove more at night and foraging efficiency increased under negative North Atlantic Oscillation (calmer ocean conditions). Conclusions: The proximity of two distinct marine habitats in this region allows individuals from a single species to use dual (low-energy/high-energy) strategies to overcome winter energy bottlenecks.