Browsing by Author "Douglas, David"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Data packageData from: Breeding and moulting locations and migration patterns of the Atlantic population of Steller's eiders Polysticta stelleri as determined from satellite telemetry(2015-12-11) Petersen, Margaret R.; Douglas, DavidThis study was designed to determine the spring, summer, autumn, and early winter distribution, migration routes, and timing of migration of the Atlantic population of Steller's eiders Polysticta stelleri. Satellite transmitters were implanted in 20 eiders captured in April 2001 at Vadsø, Norway, and their locations were determined from 5 May 2001 to 6 February 2002. Regions where birds concentrated from spring until returning to wintering areas included coastal waters from western Finnmark, Norway, to the eastern Taymyr Peninsula, Russia. Novaya Zemlya, Russia, particularly the Mollera Bay region, was used extensively during spring staging, moult, and autumn staging; regions of the Kola, Kanin, and Gydanskiy peninsulas, Russia, were used extensively during spring and moult migrations. Steller's eiders migrated across the Barents and Kara seas and along the Kara Sea and Kola Peninsula coastal waters to nesting, moulting, and wintering areas. The majority of marked eiders (9 of 15) were flightless in near-shore waters along the west side of Novaya Zemlya. Eiders were also flightless in northern Norway and along the Kanin and at Kola Peninsula coasts. We compare and contrast natural history characteristics of the Atlantic and Pacific populations and discuss evolutionary and ecological factors influencing their distribution.
- Data packageData from: Fall migration routes, timing, and wintering sites of North American ospreys as determined by satellite telemetry(2019-01-03) Martell, Mark S.; Douglas, DavidSatellite telemetry was used to determine fall migratory movements of Ospreys (Pandion haliaetus) breeding in the United States. Study areas were established along the lower Columbia River between Oregon and Washington; in north-central Minnesota; on Shelter Island, New York; and in southern New Jersey. Seventy-four adults (25 males, 49 females) were tracked from 1995 through 1999. Migration routes differed among populations but not by sex. Western Ospreys migrated through California and to a lesser degree other western states and wintered in Mexico (88%), El Salvador (6%), and Honduras (6%) (25.9 deg N to 13.0 deg N and 108.3 deg W to 87.3 deg W). Minnesota Ospreys migrated along three routes: (1) through the Central U.S. and then along the east coast of Mexico, (2) along the Mississippi River Valley, then across the Gulf of Mexico, or (3) through the southeastern U.S., then across the Caribbean. East Coast birds migrated along the eastern seaboard of the U.S., through Florida, and across the Caribbean. Midwestern birds wintered from Mexico south to Bolivia (22.35 deg N to 13.64 deg S, and 91.75 deg W to 61.76 deg W), while East Coast birds wintered from Florida to as far south as Brazil (27.48 deg N to 18.5 deg S and 80.4 deg W to 57.29 deg W). Dates of departure from breeding areas differed significantly between sexes and geographic regions, with females leaving earlier than males. Western birds traveled a shorter distance than either midwestern or eastern Ospreys. Females traveled farther than males from the same population, which resulted in females typically wintering south of males.
- Data packageData from: Movement of long-tailed ducks marked on the Yukon-Kuskokwim Delta, Alaska 1998-2000 (data from Petersen et al. 2003)(2016-04-01) Petersen, Margaret R.; Douglas, DavidThe primary objectives of this study were to identify moulting areas of adult female Breeding populations of Long-tailed Ducks Clangula hyemalis have declined in western Alaska, particularly on the Yukon-Kuskokwim (Y-K) Delta, and the species is currently considered a species of particular concern by the U.S. Fish & Wildlife Service in Alaska. Potential factors that may have contributed to this decline that occurred away from the breeding grounds could not be considered since moulting and wintering areas for this population were unknown. A study was conducted in 1998 and 1999 to locate the moulting and wintering areas of the Y-K Delta breeding population. VHF and satellite transmitters were deployed to identify areas used by moulting birds. Based on the locations identified by satellite telemetry, aerial surveys were flown to locate birds marked with VHF transmitters, then low-level aerial surveys were designed and conducted to determine the number of birds using these and adjacent areas. Moulting locations of 54 marked female Long-tailed Ducks were identified: 13 marked females were found in wetlands and large lakes on the Y-K Delta, 11 in coastal lagoons at St Lawrence Island, Alaska, and two along the coast of the Chukotka Peninsula, Russia. A autumn staging area was identified along the east coast of the Chukotka Peninsula which was used by seven of 10 birds with satellite transmitters providing locations during that period. Birds wintered in coastal waters of the North Pacific Ocean north of 50°N and between 150°E and 130°W. The wide distribution of birds in winter suggests little probability of a single factor in winter contributing to the decline.
- Data packageData from: Post-fledging movements of juvenile common mergansers (Mergus merganser) in Alaska as inferred by satellite telemetry(2016-12-19) Petersen, Margaret R.; Douglas, DavidWe implanted satellite transmitters into eight juvenile Common Mergansers to investigate post-fledging movements from their natal river in southcentral Alaska. Subsequently, they moved widely throughout portions of western and southcentral Alaska up to 750 km from their natal areas during fall and winter months. Transmitters of two birds (one male and one female) continued to send location data into their second year and allowed us to determine the location and timing of the flightless molt period for each bird. Overall, our data suggest that juvenile Common Mergansers range widely immediately after fledging, that second year males and females may differ in their movement patterns, and that these movements have implications for population genetic structure of this species.